
Dryadic: Flexible and Fast Graph Pattern Matching
at Scale

Abstract—Graph pattern matching searches a data graph for
all instances of one or more query patterns. Since it is one
of the most fundamental problems in graph analytics, many
graph pattern matching systems have been proposed with distinct
features to provide a mix of flexibility and performance. It is
generally accepted that distinct use cases may necessitate the
use of different systems. In this paper, we propose Dryadic, a
system which integrates comprehensive flexibility features, yet
can still outperform five state-of-the-art graph pattern matching
systems on the use cases they optimize for. Unlike existing systems
that employ a case-by-case design strategy, all functionalities
of Dryadic are centered around a powerful intermediate rep-
resentation, the computation tree structure, which encodes the
matching algorithms for arbitrary patterns. Dryadic implements
novel techniques to optimize the computation tree and maps
it to different backends to perform compiled, interpreted, or
distributed graph pattern matching. Extensive experiments on
nine real-world graphs of different scales show that Dryadic,
despite its all-in-one nature, is often one to three orders of
magnitude faster than other systems in three common usage
scenarios.

I. INTRODUCTION

The amount of graph data has recently surged in numerous
domains, including bioinformatics [33], social networks [30],
and cybersecurity [40]. Each domain has its own demands
for graph data processing, but each also shares a significant
interest in graph pattern matching. This family of problems
stems from the well-known Subgraph Isomorphism problem,
and requires finding all subgraphs in a dataset that are iso-
morphic to a given query pattern. As pointed out by Sahu et
al. [43], many problems, such as motif enumeration, clique
finding, and subgraph matching, are variants of the graph
pattern matching problem. Many applications, including fraud
detection [36] and graph mining [17], use subgraph pattern
matching as the primitive within their core functionality,
and consequently demand a graph matching system that can
provide both sufficient flexibility and high performance.

A flexible subgraph pattern matching system should support
the following key features. First, the system should enable
both edge-induced and vertex-induced pattern matching. Edge-
induced matching focuses on identifying the connectivity
between vertices, which is widely used in graph database
systems [37], [50]. Vertex-induced matching additionally con-
siders the absence of connectivity and is useful for graph
characterization [2], [49]. Second, the system should support
labeled pattern matching to allow applications to leverage
the rich non-topological data that labels can offer. Third, the
system should handle arbitrary pattern queries which may or
may not be available for offline optimization. Finally, the

system should be able to process large-scale graphs with
billions of edges, which is increasingly important due to the
tremendous growth rate of real-world graphs [43].

The performance requirement faces even more challenges.
Subgraph Isomorphism is a known NP-Complete prob-
lem [14], so the inherent workload for graph pattern matching
problems is far heavier than that of traditional graph analytics
(e.g. graph traversal). High performance systems should opti-
mize not only for the irregularity inherent in the graph data
structure, but also the complex control flow and redundant
computation induced by the matching algorithm. Moreover,
pattern queries may only be available online, inhibiting ex-
haustive search-based optimization used in most compilation
systems.

There exist many performance-oriented systems for graph
pattern matching, but each specializes in only a subset of the
flexibility features. For example, DAF [18] can efficiently pro-
cess small labeled graphs, but its performance drops quickly
when processing reasonably large graphs with millions of
edges. AutoMine [32] employs compilation techniques to
generate query code tailored to a given set of patterns but
must re-compile for every new query. Pangolin [8] leverages
the high-performance parallel operation and scheduling of the
Galois engine [38] and avoids re-compilation for new queries.
However, Pangolin can be more than ten times slower than
AutoMine for heavy workloads. While it is always possible
to “tune” the experiments to favor one system over another,
as shown in Section II, these systems form a superiority cycle
for common workloads. Therefore, no system can consistently
outperform the others. A user would have to use multiple
different systems to handle distinct usage scenarios.

This paper proposes Dryadic, a flexible and efficient
graph pattern matching system which 1) supports the above-
mentioned important flexibility features to enable easy adop-
tion into existing real-world applications and 2) offers substan-
tially better performance than all existing systems in the usage
scenario they are specialized for. Dryadic is motivated by
an observation that existing systems specialize the execution
of similar pattern matching algorithms in specific settings.
The observation demonstrates an opportunity to employ a key
methodology leveraged in compiler research – intermediate
representation-centered optimization and backend support.

However, building the intermediate representation and effi-
cient backends for graph pattern matching presents multiple
unique challenges. First, the intermediate representation must
be flexible enough to meet the needs of different pattern
matching algorithms (e.g., simultaneous multi-pattern match-



ing). Second, the intermediate representation should be easy
to manipulate to apply both static and dynamic optimizations.
Third, different usage scenarios (e.g., patterns available offline
vs. online) demand dramatically different backends, each of
which requires significant effort to develop.

To address these challenges, Dryadic builds a flexible in-
termediate representation, called the computation tree, which
encodes a compact representation of matching algorithms for
arbitrary labeled or unlabeled patterns. The tree structure
facilitates important optimizations to eliminate computational
redundancy both within a single pattern’s algorithm, and
between the algorithms for multiple patterns. It also supports a
work-stealing runtime, which enables parallel workers to steal
fine-grained tasks from other workers to dramatically improve
load balance. In comparison, existing work only supports
coarse-grained stealing. Moreover, the tree structure is simple
enough to interpret, compile, and parallelize.

Empowered by its intermediate representation, Dryadic’s
backends are much easier to build compared to specialized
systems. Each backend only needs to determine the order to
execute the computation tree on the data graph and implement
the rudimentary operations. We implemented three backends
with about 3,000 lines of C++ code. Dryadic can compile the
computation tree directly to efficient, reusable C++ code for
parallel and distributed execution when the target pattern is
fixed and used across multiple input graphs. If the pattern is
only known at runtime, Dryadic quickly builds a computation
tree and uses the Galois parallel engine [38] as an interpreter
to run it on the input graph.

To evaluate Dryadic’s performance in different usage sce-
narios, we always compare it with the state-of-the-art graph
pattern matching system specialized for that use case. The
highlights of the results are summarized as follows: 1) For
labeled pattern matching, Dryadic is up to 56X and on average
11.4X faster than DAF on 64 workloads using 10 patterns
and 7 graphs. 2) We study two use cases in unlabeled multi-
pattern matching. For single-machine parallel motif enumer-
ation, Dryadic outperforms Pangolin and AutoMine by up to
25.4X and 6X, respectively. For single-machine parallel motif-
counting, Dryadic is on average 5X faster than PGD [2],
which is the fasted manual implementation of size-4 motif
counting (to our best knowledge). 4) For distributed graph
pattern matching on 16 machines, Dryadic is up to 20X faster
than CECI.

Overall, the paper makes the following contributions. 1) We
propose the Dryadic system to harmonize flexibility and perfor-
mance, which supports the most comprehensive features and
still outperforms specialized state-of-the-art subgraph pattern
matching systems. 2) We propose the computation tree repre-
sentation to encode matching algorithms for arbitrary labeled
and unlabeled patterns, as well as multiple optimizations to
eliminate computation redundancy and improve load balance.
3) We develop a set of backends to efficiently map these
optimized trees to unique execution environments.
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Fig. 1: A graph pattern matching example with two labeled
patterns.

II. BACKGROUND AND MOTIVATION

Many graph pattern matching systems have slightly different
definitions of the problem and claim a variety of distinct
features. In this section, we define the graph pattern matching
problem in a flexible manner. Next, we describe five distinct
features which distinguish multiple state-of-the-art pattern
matching systems from others. Finally, we present the demand
and opportunity to implement all these features in one single
system while providing the best performance over all existing
systems.

A. Graph Pattern Matching Basics

Given a query graph pattern Q = (VQ, EQ) where VQ is
a set of vertices and EQ is a set edges whose end vertices
are in VQ. The graph pattern matching problem accepts an
input graph G and identifies all subgraphs of G that are
isomorphic to Q. Each such subgraph S = (VS , ES) is called
an induced subgraph and the mapping from Q to S is called an
embedding. S is a vertex-induced subgraph if S includes all
edges in G whose endpoints are in VS . Otherwise, S is edge-
induced. Like many prior studies [32], [3], [26], we focus on
undirected graphs, while the techniques can be readily applied
to directed patterns and graphs.

Figure 1 shows an example of matching two query patterns
in a data graph. A graph pattern matching system should
identify two sets of subgraphs. The subgraphs in the first
set should be isomorphic to Q1 and those in the second set
isomorphic to Q2. To compute a set, the system can generate
a matching order. For instance, the matching order could be
(A,B,B,C) to match Q1. The system then follows this order
to identify embeddings of Q1 in the data graph. In this paper,
we use the matching order generation algorithm proposed in
AutoMine [32]. We leave dynamic matching order generation
and selection to future work.

B. Distinct Features in Existing Systems

State-of-the-art systems implement some distinct perfor-
mance features, which empower them to substantially exceed
the capabilities of prior work. We illustrate five critical features
and briefly describe how they are implemented in those
systems.
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Feature 1: Symmetry breaking. The inherent symmetry in
the pattern may cause redundant computation by identifying
the same embedding more than once. For instance, without
symmetry breaking, each embedding of Q1 in Figure 1 is
identified twice because based on the pattern topology and
label information, it is impossible to distinguish the two B
vertices connected to A. A popular method [16] is to use the
vertex IDs to break symmetry. For Q1, we can enforce that in
the same embedding the first vertex matching B should have
a larger ID than the second vertex matching B. As in multiple
prior systems [3], [31], [41], we also follow this idea to break
symmetry.

Feature 2: Multi-pattern redundancy elimination. When
a user queries multiple patterns, matching the patterns se-
quentially may cause significant computation and data ac-
cess redundancy. Consider the two patterns in Figure 1.
Since they share the same triangle-shaped sub-pattern, the
two queries should be executed at the same time to share
the sub-embeddings corresponding to the shared sub-pattern.
Arabesque [49], RStream [53], and Pangolin [8] natu-
rally exploit the shared sub-patterns through their iterative
exploration-reduction execution model. Each iteration consists
of an exploration and a reduction phase. The exploration phase
extends a set of initial embeddings by appending one more
connected vertex or edge to each. The reduction phase runs an
isomorphism check on each extended embedding to determine
whether it matches a subpattern of the query. The system keeps
the matched ones as initial embeddings for the next iteration.
When embeddings of different patterns are formed from the
same sub-embedding, these systems successfully eliminate
redundancy.

Feature 3: Leveraging efficient graph processing run-
time. Several existing systems are built upon highly optimized
parallel runtime to improve performance [49], [8]. For exam-
ple, Pangolin is built upon Galois, a parallel processing engine
particularly good at irregular applications, to accelerate oper-
ation scheduling and synchronization. Pangolin thus evolves
together with Galois and enjoys its additional graph processing
features. In comparison, standalone graph pattern matching
systems may not get adopted due to the limited functionality.

Feature 4: Code specialization. Compilation-based graph
pattern matching systems, represented by EmptyHeaded [1]
and AutoMine, generate a specialized program for the given
pattern. The program has a nested loop at each layer trying
to extend the embedding by including one more vertex. This
approach avoids substantial runtime overhead incurred by non-
compilation based systems, but it generates a new program
whenever a new pattern is given, which requires another round
of compilation, but may be amortized over many uses.

Feature 5: Parallel and Distributed matching. Pattern
matching on large-scale graphs is compute-intensive and has
a huge amount of inherent parallelism, which motivates many
systems to leverage parallel and distributed execution to
improve performance. AutoMine and Pangolin respectively
use OpenMP and Galois for parallel processing on a single
machine. Distributed pattern matching systems, represented
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Fig. 2: The circular “superior-to” relationship between five
graph pattern matching systems.

by CECI [3], focus their optimizations on load balance and
minimizing the data exchange between machines.

C. Demand and Opportunity for One Single Flexible and
Efficient Graph Matching Systems

Every existing system is short in one or more of the
flexibility and performance features in order to specialize for
a particular use case. They have a good reason to make such
a choice because different features often indicate conflicting
optimization goals. However, modern applications are complex
and may encounter different usage scenarios, which makes
it difficult to determine the best system to satisfy different
requirements.

To demonstrate this challenge, we conduct four experiments,
each to compare two systems, with several popular graph
datasets used in many prior studies [32], [3], [49], [8]. Fig-
ure 2 shows that the five considered systems form a circular
“superior-to” relationship. DAF is faster than AutoMine when
running five different queries on the Mico graph (details in
Section IV) because the pattern queries are given online, so
AutoMine’s code generation and compilation costs are on
the critical path. When we match a fixed pattern (a size-4
clique) on the LiveJournal graph, AutoMine produces better
performance than Pangolin, which in turn outperforms CECI.
CECI could be 5.2X faster than DAF on the Patents graph
thanks to CECI’s distributed computing capability.

We observe that these graph pattern matching systems run
similar algorithms, which identify and prune certain sets of
candidate vertices in the data graph to match the pattern
vertices. Each system employs manual optimizations for the
targeted setting (e.g., large graph size or availability of query
patterns). However, in many other domains, systems are not
built in such an ad hoc manner. For example, database
systems build one or more intermediate representations for
arbitrary queries, and leverage a set of query optimizations and
backends to map the representations to specialized executions.
The Java virtual machine uses a similar methodology to build
even more general intermediate representations, optimizations,
and backends for arbitrary Java programs. This paper is the
first to apply the intermediate representation-centered design
philosophy, which has been tremendously successful in other
domains, to graph pattern matching.
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III. THE DRYADIC SYSTEM

The Dryadic system integrates all the flexibility features
identified in the previous sections, and still outperforms each
state-of-the-art graph pattern matching system in its area
of specialization. The power of Dryadic roots in a key
methodology leveraged by compiler research – intermediate
representation-centered optimization and backend support. The
intermediate representation encodes the matching algorithms
for arbitrary patterns and is amenable to both static and dy-
namic optimizations, as well as compilation and interpretation.
Each backend is tailored for a particular user scenario or
hardware setting, and maps the intermediate representation to
efficient execution.

Dryadic implements a tree-structured intermediate repre-
sentation, referred to as the computation tree, to encode the
graph pattern matching algorithms. Dryadic has three major
components centered around the computation tree. The tree
construction component takes the input patterns, and generates
the matching order and symmetry-breaking restrictions for
each pattern. It then builds the computation tree by merging
the matching orders and associates each node in the tree with
a compound set operation. The tree optimization component
applies several optimizations to the computation tree to elim-
inate redundant computation and improve load balance. The
execution component can be configured to meet specific needs,
which supports three execution modes, including interpreted
execution by Galois and C++ code generation for parallel and
distributed execution.

The Dryadic system is straightforward to use. A user only
needs to provide a file to describe patterns of interest in a
simple format and specify one of the supported execution
modes (i.e., compiled or interpreted). Dryadic also implements
helper functions to generate patterns. For instance, it can
generate all connected patterns of a certain size to support
applications such as motif counting.

A. Computation Tree-Centered Representation and Optimiza-
tion

Dryadic builds a computation tree to naturally support
simultaneous multi-pattern matching as described in Sec-
tion III-A1. The static optimizations move partial set oper-
ations to upper levels of the tree to avoid redundant com-
putation, and are described in Section III-A2. The runtime
optimization achieves load balance through fine-grained work
stealing as described in Section III-A3.

1) Computation Tree Construction: Given a pattern,
Dryadic uses prior techniques to compute a matching order and
the restrictions to break symmetry as described in Section II.
The matching order of a pattern specifies the dependencies
of computations to identify the vertices in an embedding,
while the restrictions enforce “id-is-larger” relations between
some of the vertices to avoid identifying the same embedding
multiple times. The matching order, the restrictions, and the
topology of the pattern together determine the operations to
compute the matched vertices for each pattern vertex.

(a)

A

B

B

C

C

𝑢1

𝑢3

𝑢0

𝑢2

𝑢4

(b)

A

B

B

C

C

∈ 𝑁(𝑢0)

∈ 𝑁 𝑢1 − 𝑁 𝑢0 − 𝑁(𝑢2)

∈ 𝑁(𝑢0) ∩ 𝑁 𝑢1 < 𝑢1

∈ ⋯

(c)

A

B

B

C

C

B

B

C

C

A

B

B

C

B

B

X

X

𝑢4: 𝑣5 𝑣3

𝑢0: 𝑣0 𝑣6

𝑢1: 𝑣1 𝑣2 𝑣7 𝑣8

𝑢2: 𝑣2 𝑣1 𝑣8 𝑣7

𝑢3: 𝑣3 𝑣5 𝑣9

Fig. 3: A computation path for Q1 in Figure 1 and its
corresponding embedding trees for a data graph. In (a), the
solid lines with arrows indicate the matching order, the dotted
line with an arrow means the source pattern vertex restricts
the destination pattern vertex, and the dotted lines without
arrows show the topological relations between the vertices in
the query pattern. In (c), the dotted box means the included
subtree is pruned by the restriction. A cross shows that no
matched vertices can be found to extend the tree along the
corresponding path.

Figure 3 (a) shows a graph structure to demonstrate all these
three kinds of information. However, it does not directly show
what computations should be performed on the data graph.
We hence transform it to the representation in Figure 3 (b)
by assuming that a user is interested in vertex-induced graph
pattern matching. In this new representation, except the first
pattern vertex (i.e., A), every pattern vertex is associated with
a compound set operation to encode its topological relations
with other pattern vertices before it in the matching order. For
example, the fourth pattern vertex’s compound set operation
is N(u1)−N(u0)−N(u2), where N is an operation to return
the neighbor list of a vertex and the minus sign represents a
set difference operation. The intuitive understanding is that u3

is in u1’s neighbor list but not in u0 or u2’s neighbor list.
The compound set operations specify ways to extend partial
embeddings. Consider an embedding consisting of vi, vj , and
vk that matches the sub-pattern formed by u0, u1, and u2 (i.e,
a triangle). If vi, vj , and vk match u0, u1, and u2, respectively,
each vertex in the set computed by N(vj) −N(vi) −N(vk)
forms an embedding with vi, vj , and vk, which matches the
sub-pattern consisting of u0, u1, u2, and u3 (i.e., a tailed
triangle). To account for the restrictions, we need bounded set
operations like the one associated with the third pattern vertex.
In this example, u1 restricts u2, so if vj , which matches u1,
is used to compute a set of vertices to match u2 (referred to
as u2’s vertex set), the ID of each vertex in the set should be
smaller than vj’s ID.

We define a matching order and its associated compound set
operations as a computation path, represented by CP . CP [i]
is called a computation node. CP [i].label and CP [i].SetOp
respectively represent the label and the associated compound
set operation of the ith pattern vertex in the matching order.
Note that the computation path only defines how to extend
each partial embedding towards the target pattern instead of the
order to extend the partial embeddings. Two intuitive orders to
extend partial embeddings are breadth-first and depth-first. The
breadth-first order requires that smaller partial embeddings
should be extended before larger partial embeddings. When
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Fig. 4: A computation tree and its corresponding embedding
tree for a data graph.

there exist more than one smallest partial embeddings, the
embedding generated the earliest should be extended, which
can be easily implemented by a queue. The depth-first order,
in contrast, extends larger embeddings first, and can be imple-
mented with a stack of increasingly larger embeddings.

Figure 3 (c) shows the matched vertices when running the
computation path in Figure 3 (b) on each vertex in the data
graph from Figure 1. The execution on each data vertex forms
a tree structure, which we call an embedding tree. Note that the
figure only demonstrates two embedding trees because only
two data vertices successfully match the root pattern vertex.
The embedding tree has three important properties. First, its
height is at most |QV |, the number of vertices in the query
pattern. Second, each path of length |QV | from root to a
leaf represents a distinct embedding. Third, the embeddings
explored by a pruned sub-tree are present in a non-pruned
path, due to symmetry breaking.

Given multiple patterns, Dryadic builds a distinct computa-
tion path for each pattern and merges the computation paths
to form a computation tree as follows. CPi[k] and CPj [k] are
merged if and only if the first k − 1 computation nodes in
CPi and CPj are merged and CPi[k].label = CPj [k].label
& CPi[k].SetOp = CPj [k].SetOp. Figure 4 shows a compu-
tation tree by merging the computation paths for Q1 and Q2
from Figure 1.

As shown in Figure 4, the merged computation tree for Q1
and Q2 only has seven pattern vertices because the first two
vertices in both matching orders have the same associated set
operations and their labels are the same. The compound set
operations associated with the two vertices and their results
are reused by both patterns. However, we cannot merge the
third vertices in the two patterns. Although they have the same
topological relations to the first two vertices and the labels are
the same, their associated set operations are different (i.e., one
is bounded and the other is not) due to symmetry breaking.
Note the merging does not confuse embeddings for the two
patterns. The vertices matched to the last pattern vertex for
each pattern uniquely identify the corresponding embeddings.

Given a pattern, Dryadic builds the same computation tree to
perform both vertex-induced and edge-induced graph pattern
matching. The compound set operations for edge-induced
pattern matching replaces set difference with an operation that
removes the corresponding vertex from the set, to guarantee
no vertex appears more than once in an embedding.

2) Operation Motion to Minimize Redundant Computation:
Computation tree merging eliminates a certain amount of
redundancy, but there still exist two kinds of redundancy. First,
set operations may run multiple times with the same inputs.
Consider the operation N(u1) − N(u0) − N(u2) − N(u3)
associated with the pattern vertex u4 in Figure 4. If the vertex
matched to u2 has a large degree, it is possible that the first two
set operations (i.e., N(u1)−N(u0)−N(u2)) are repetitively
run with the three vertices mapped to u0, u1, and u2 as inputs.
Because the embedding tree expands to include more vertices
at lower levels, this redundancy problem is even more serious
than the one addressed by merging the computation trees.
Second, the same set operation may be performed multiple
times with the same input to match different patterns. As
Figure 4 shows, the compound set operations associated with
the fourth vertex in Q1 and Q2 both perform N(u1)−N(u0),
which may be redundant if the extended embeddings for both
patterns have the same vertices mapped to u0 and u1.

Algorithm 1: Operation motion algorithm
input : node //A node in the computation tree

1 begin
2 for child in node.children do
3 run Code Motion on child

4 if node.parent 6= null then
// node.setOp is the SetOp

associated with node
// node.sets is a set of setOps

moved to node from node’s
sub-tree

5 Insert node.setOp to node.parent.sets
6 for setOp in node.sets do
7 if setOp.parent ∈ node.parent.sets then
8 continue

9 else
10 Insert setOp to node.parent.sets

We call a set operation a redundant operation if it is run
multiple times with the same inputs to explore the same em-
bedding tree. Dryadic implements Algorithm 1 to completely
eliminate redundant operations by moving set operations to
upper levels of the computation tree, which we refer to as
operation motion. It uses a three-field data structure, SetOpi,
to represent a compound set operation associated with a
pattern vertex i. The first field, in, includes all pattern vertices
connected to vertex i and before vertex i in the matching
order. The second field, out, contains all pattern vertices
disconnected to vertex i and before i in the matching order.
Finally, the res field contains the ID of the pattern vertex
restricting vertex i. Recall that within an embedding the ID of
the matched vertex for the ith pattern vertex must be larger
than the ID of the matched vertex for the pattern vertex
indicated by res. If res is -1, the vertex set computed by
SetOpi is not restricted. We define SetOp.parent as the
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parent of SetOp, which is a copy of SetOp except that 1)
it excludes the largest ID in SetOp.in and SetOp.out and
2) it has −1 in its res field. Given that SetOp.parent is
already computed, the compound set operation corresponding
to SetOp only needs to perform one set operation. For
example, N(u1)−N(u0)−N(u2)’s parent is N(u1)−N(u0).
Given that u1 and u0 are mapped to the same data vertices,
the former only needs to perform a set difference operation if
the result of the latter is available.

Algorithm 1 recursively moves SetOpi.parent to associate
with the parent vertex of the vertex SetOpi is associated with.
It uses a set container to store all the SetOps associated with
a pattern vertex to eliminate duplicates. When the algorithm
terminates, every pattern vertex in the computation tree has
a set of distinct SetOps’. We show in the following lemma
(proof omitted for brevity) that this algorithm guarantees that
the processed computation tree is free of redundancy.

Lemma 1. Algorithm 1 does not change the semantics of the
computation tree and eliminates all redundant set operations.

Dryadic implements two additional optimizations to further
improve the performance of the computation tree. The first
optimization is based on the observation that if SetOp.ins is
empty, we have to use expensive set complement operations.
For instance, if SetOpi.ins = ∅ and SetOpi.out = {j}, we
need to compute all vertices not in the neighbor list of the
vertex matched to pattern vertex j. Hence, Dryadic does not
move SetOp.parent to a higher level, if |SetOp.in| = 1 and
|SetOp.parent.in| = 0.

The second optimization is motivated by the observation
that because Algorithm 1 always sets the res field to −1 when
computing SetOp.parent, it may compute an unnecessarily
large vertex set. Consider an unlabeled clique pattern. The
ith (i ≥ 2) pattern vertex’s parent is at least associated with
SetOpi−1 and SetOpi.parent. The former is restricted by
i− 2 while the latter is not restricted. However, since SetOpi
is restricted by i − 1, the matched vertices computed by
SetOpi.parent would be useless if they violate the restriction.
Therefore, we should leverage the transitivity of restrictions
and also use i − 1 to restrict SetOpi.parent. We generalize
the idea in the following way. Given that SetOpj is generated
by the recursive procedure starting from SetOpk, we assign
j to SetOpj .res is the jth pattern vertex transitively restricts
the kth pattern vertex.

3) Load Balance with Minimized Footprint: The compu-
tation tree-based representation is amenable to parallelization
because a system can use different workers to easily execute
it on different vertices in the data graph. However, such a
naive parallelization method would lead to a serious load
balance problem. As shown in numerous prior studies [25],
[15], [7], [42], the degree distribution in real-world graphs is
highly skewed, so the embedding tree rooted at one vertex
can be several orders of magnitude larger than one rooted on
a different vertex. Worse, the more complex the pattern is,
the more serious the problem becomes. Assume that we are
interested in all the single-edge embeddings in an unlabeled

data graph. The gap between the largest embedding tree and
the smallest is O(Dmax)−O(Dmin) where Dmax and Dmin

respectively represent the largest and the smallest degree in
the data graph. If we instead match the triangle pattern, this
gap becomes O(D2

max)−O(D2
min).

A popular approach to combating the load imbalance prob-
lem is to compute all smaller embeddings before larger embed-
dings [49], [53], [8]. Explained in the computation tree terms,
they perform a breadth-first execution of the computation
tree on the data graph. Specifically, they enforce a global
synchronization between any two adjacent levels across all
embedding trees. Because of the inherent dependencies in the
embedding tree structure, they have to maintain at least all
embeddings at level i before the computation of vertices at
level i+1. This approach hence has significant space overhead
which cancels or even outweighs its benefit, especially for
large graphs.

Although Dryadic can easily support breadth-first execution,
its default execution is depth-first to minimize the memory
footprint. A straightforward approach to improving load bal-
ance is to support coarse-grained work stealing [3]. Every
worker is initially assigned a set of data vertices to work on.
An idle worker steals from other workers their unprocessed
data vertices. However, as mentioned above, this approach
does not resolve the load balance issue introduced by the huge
disparity between embedding trees rooted at different vertices.

Dryadic improves load balance through fine-grained work
stealing based on the computation tree and embedding tree
abstraction. While the essence of coarse-grained work stealing
is to steal entire embedding trees, Dryadic’s fine-grained
work stealing supports stealing arbitrary sub-embedding trees.
Consider the example in Figure 3. Suppose that worker 2
finishes traversing the embedding tree rooted at data vertex v6
when worker 1 is still processing the embedding tree rooted
at vertex v0 and is somewhere in the left sub-embedding tree.
Worker 2 can in concept safely steal the right sub-embedding
tree. However, we should address three problems to properly
implement the stealing. First, the runtime should determine
which sub-embedding tree, if any left, to steal from the victim
worker. Second, we should figure out what data are needed
to process the stolen work. Third, we should make sure that
processing the stolen work in parallel does not cause data race
conditions.

To solve the first problem, Dryadic gives a total order to
all paths of the same length from the root data vertex in an
embedding tree. Given two paths, Pi and Pj , in the same
embedding tree, Pi > Pj if Pi[k].ID > Pj [k].ID where k is
the smallest non-negative integer for Pi[k].ID to be different
from Pj [k].ID. If such a k does not exist, Pi = Pj . Because
Dryadic implements the vertex set in a way such that the
vertices with smaller IDs are always processed first, if a worker
is processing the lth vertex in path P , a path P ′ has not been
processed if P ′[0 : l−1] > P [0 : l−1]. Based on the ordering,
Dryadic randomly selects an active thread as the victim, and
runs Algorithm 2 to locate a sub-embedding tree at the highest
possible level for work stealing.
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Algorithm 2: Locating a sub-embedding tree to steal.
input : P //The path the victim worker is working on

1 begin
2 for i← 0 to P.size− 1 do
3 vs← vertex set containing P [i]
4 if P [i] is the last vertex in vs then
5 continue

6 else
7 v ← vs.pop back()

// the stolen sub-embedding
tree is at level i rooted
at v

8 return v, i

9 return stealing fail

To compute the stolen sub-embedding tree, we need the path
from the root vertex of the embedding tree to its root vertex, as
well as all the computed vertex sets based on only the vertices
on that path. We wrap all such data in a data structure called
the context of the sub-embedding tree. When a sub-embedding
tree is stolen, Dryadic duplicates its context and sends it to the
stealer. Dryadic also properly synchronizes the stealer and the
victim to avoid data race conditions in the stealing process.
Finally, the duplication of the context also guarantees that the
processing of the stealer does not conflict in any way with the
victim.

B. Different Modes to Execute the Computation Tree

The computation tree representation is flexible and can be
executed on data graphs in different modes. In this section, we
describe an implementation to use the Galois parallel engine
to interpret the computation tree in the depth-first order on
data graphs. We also describe the code generation component
to directly map the computation tree to nested loops in C++
code for parallel and distributed execution.

1) Galois-Based Interpretation: Dryadic leverages the Ga-
lois parallel engine to support flexible pattern matching when
the patterns are not known offline. Galois implements a set of
features to accelerate irregular applications, which empowers
multiple graph processing systems. The most important fea-
tures leveraged by Dryadic are automatic parallelization and
per-thread data allocation. Specifically, Dryadic uses the inter-
face provided by Galois to create a work list and pushes all
vertices in the data graph into it. Dryadic then passes a lambda
function to Galois’s do all operator, which automatically runs
the function on each vertex in the work list.

The lambda function executes the computation tree in the
depth-first order, which can be implemented in a recursive way
as described in Algorithm 3. However, in practice the recursion
would incur too much overhead. Thus, Dryadic uses a stack to
emulate recursion to improve performance. Dryadic allocates
a stack for each thread through Galois’s per thread storage
allocation API. Each element in the stack is a data structure
that contains a vertex on the explored path and pointers to

Algorithm 3: Depth-first interpretation.
input : v //A data vertex
input : n //A node in the computation tree

1 begin
2 if v does not match n.label then
3 return

// setMap stores computed vertex
sets

4 for setOp in n.sets do
5 setMap[setOp]← compute setOp on v with

setMap[setOp.parent]

6 for n′ in n.children do
7 for v′ in setMap[n′.setOp] do
8 recurse on v′, n′

the results of its associated set operations. Dryadic pushes
the vertex into the stack and executes a loop. The loop body
has two parts. The first part computes the compound SetOps
associated with the vertex at the top of the stack. Due to the
nature of recursion, SetOp.parent must have been computed
and its result stored in the setMap as shown in the algorithm.
Dryadic needs to chooses one of two options in the second
step. If the vertex at the top of the stack has unprocessed
neighbors that match the label of the next pattern vertex,
Dryadic pushes one of these neighbor vertices into the stack.
Otherwise, it pops an element off the top of the stack. The
algorithm terminates if the stack does not have any vertex.

Dryadic supports coarse-grained work stealing because the
do all operator ensures that no threads stay idle if the work list
still has unprocessed vertices. However, recall that the coarse-
grained work stealing is insufficient to address the load imbal-
ance problem. Dryadic allows the Galois runtime to interact
with the work stealing runtime, discussed in Section III-A3,
by adding a dummy vertex into the work list after all data
vertices are pushed. When Galois runs the lambda function
on the dummy vertex through the do all operator, the lambda
function invokes the stealing runtime to attempt to steal work
from other threads. A failed attempt means that no other
threads have available sub-embedding tree to steal. Otherwise,
the lambda function should process the stolen work and push
the dummy vertex back to the work list.

Dryadic implements two optimizations to further improve
performance. First, The setMap data structure indexed by
SetOp incurs substantial overhead because Dryadic needs to
frequently access it for most compound set operations. To
address this, Dryadic assigns a unique non-negative integer
to each set operation and stores the results in a vector indexed
by that integer. Second, each set operation produces a new
vertex set which needs to be stored in memory, leading to
substantial memory management overhead. Dryadic analyzes
the computation tree to figure out the maximum number of set
operations associated with the longest path. At the beginning
of the execution, it allocates that many memory regions, each
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having just enough memory to store the max-degree number
of vertex IDs. Dryadic reuses these regions to minimize the
memory management overhead.

2) Code Generation for Parallel and Distributed Execution:

a) Mapping to nested loops.: As prior systems [32],
[1] show, generating and pre-compiling code specialized for
specific patterns typically has high performance as it avoids
runtime overhead to handle general patterns. For example,
one can write a three-level nested for loop to only match the
unlabeled triangle pattern, while a general pattern matching
system has to at least determine the routine to execute to match
the pattern and sometimes even needs to run isomorphism
check to determine the pattern of enumerated embeddings [49],
[53], [8].

The computation tree naturally maps to a nested loop
structure, with each pattern vertex corresponding to a loop.
Its children, if any, correspond to consecutive nested loops in
its loop body. The outer-most loop traverses all the vertices,
while each iteration of the innermost loop computes a set of
vertices to match the last pattern vertex. Each of the loops in-
between traverses over a vertex set computed by the compound
set operation associated with its pattern vertex. We point out
three properties of the generated nested loop structure. First, it
explores the embedding trees in the depth-first order. Second,
an iteration of any inner loop explores a sub-embedding tree.
Third, every loop is parallelizable because the iterations of the
same loop explore distinct sub-embedding trees, which do not
depend on each other.

b) Parallel and Distributed Execution.: Nested loop
structures parallelize naturally at the outermost level using
standard tools like OpenMP parallel for. In this case, the outer
loop corresponds to a single vertex per iteration, and each inner
loop adds a vertex to the partial embedding. Because of this
property, the execution time of an iteration of the outermost
loop is sensitive to the degree of every vertex that appears
in a particular embedding. On the LiveJournal [56] graph,
the most expensive vertex iteration of motif 4 enumeration
takes as long as the cheapest 96.6% of the vertex iterations,
accounting for over 7.3% of the total CPU time as a single
iteration among 4 million. Obviously, this poses some load
balance challenges, which are exacerbated as the pattern size
increases.

In a distributed environment, we assign work to machines
on the basis of a fair distribution of edges. On an individual
machine, the OpenMP dynamic scheduler handles the task of
assigning work to threads. Using it with a task granularity of
64 introduces minimal overhead, but helps mitigate the load
balance issue by ensuring no one thread has to do excessive
work. There is still an upper limit to how well this approach
can handle load balance. However, due to the nature of the
pre-compiled nested loop structure, it cannot easily interact
with the stealing runtime. We leave it to future work.

q1 q3 q5 q7 q9

q2 q4 q6 q8 q10

Fig. 5: Pattern queries used in the evaluation.

IV. EVALUATION

In this section, we evaluate the effectiveness of the compu-
tation tree and the efficiency of the backends in Dryadic.

A. Methodology

Compared systems. We compare Dryadic with five state-
of-the-art systems published in the past two years. DAF [18] is
the fastest graph pattern matching system for labeled graphs,
which avoids exploring failing paths in the embedding tree.
AutoMine [32] and Pangolin [8] are the fastest single-
machine graph pattern mining systems and can also be used
for pattern matching. They are particularly good at parallel
multi-pattern matching. Note that although Peregrine [20] and
DwarvesGraph [6] claim to outperform several other sys-
tems for multi-pattern matching, they actually perform pattern
counting instead of enumeration. We hence exclude them for
comparison. CECI [3] 1 is the only open-source distributed
graph pattern matching system, which claims to outperform
multiple single-machine systems, including PsgL [45] and
DUALSIM [22]. In addition, we also compare Dryadic with
PGD [2], a state-of-the-art manual implementation of motif
counting. We use PGD to only count connected patterns for a
fair comparison.

Datasets and patterns. Table I shows the 9 real-world
graphs used in the experiments. Most are from the Stanford
SNAP collection of datasets [30], representing a sampling of
online social network, interaction, and collaboration graphs.
Most of the graphs do not have labels. For consistency, we
randomly assign one of 10 distinct labels to each vertex. We
use ten non-clique query patterns of five different sizes shown
in Figure 5 with randomly generated labels assigned to the
pattern vertices. The experiments to compare Dryadic with
DAF use these patterns. The other experiments either use
clique patterns or all the connected patterns of a certain size.

Machine environment. Our single machine experiments
run on a system with two Intel Xeon E7-4830 v3 CPUs
(hyperthreading disabled) and 256GB of memory. The system
runs Ubuntu 18.04 with Linux kernel 4.15 and compiles with
GCC version 7.5 at optimization level -O3. Our distributed
experiments run on a cluster of machines each with two Intel
Xeon E5-2670 CPUs (hyperthreading disabled) and 64GB
of memory, running CentOS version 6.3 with Linux kernel
2.6 and compiling with GCC version 4.4.7 at optimization

1The released CECI system (https://github.com/iHeartGraph/ceci-release)
cannot produce correct results, as confirmed by the authors on Aug. 9th,
2020. As of April. 19, 2021, they have not fixed the bugs.
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Graphs #Vertices #Edges Description
WikiVote [28] 7K 100K Wiki editor voting

Enron [24] 37K 183K Email network
Amazon [56] 334K 926K Product network
DBLP [56] 317K 1M Collaboration network
MiCo [12] 96K 1.1M Co-authorship

Patents [29] 3.8M 16.5M US Patents
LiveJournal [56] 4M 34.7M Social network

Orkut [56] 3.1M 117.2M Social network
Friendster [56] 65.6M 1.8B Social network

TABLE I: Graph Datasets.

Fig. 6: Results on labeled pattern matching on four graphs.

level -O3. It uses OpenMPI version 3.0.0 to drive the QDR
InfiniBand interconnect.

B. Labeled Pattern Matching

We compare Dryadic’s generated code with DAF by running
the ten patterns in Figure 5 on the first seven graphs in
Table I. Edge-induced matching is used because DAF does
not support vertex-induced matching. Figure 6 shows the
speedups of Dryadic over DAF on the four smaller graphs
(i.e., WikiVote, Enron, Amazon, and DBLP). Out of the 40
runs, Dryadic is faster than DAF for 32 runs. Dryadic’s
average speedups over DAF are 1.34X, 1.47X, and 3.1X for
WikiVote, Amazon, and DBLP, respectively. DAF achieves
a 1.14X speedup over Dryadic for Enron. However, DAF’s
performance significantly drops when processing reasonably
large graphs. As Figure 7 shows, the performance gap between
DAF and Dyradic increases substantially for the three larger
graphs. We only show the results for six patterns because
DAF times out at 20 minutes for the others. On average,
Dryadic outperforms DAF by 8.4X, 37.4X, and 17.7X for
Mico, Patents, and LiveJournal, respectively.

By investigating DAF’s slowest runs, we identified two
problems. First, DAF’s auxiliary data structure consistently
consumes a large amount of memory. Figure 8 reports the peak
memory consumption of DAF and Dryadic for the executions
on the three larger graphs. For the largest graph, LiveJournal,

Fig. 7: Results on labeled pattern matching on three graphs.

Fig. 8: Memory consumption for labeled pattern matching on
three graphs.

Graph Size AutoMine Pangolin Dryadic-C Dryadic-G
WikiVote 4 48.2 16.96 1.13 2.19

5 4182.95 13827.8 454.45 719.47
Enron 4 35.3 29.26 1.24 2.38

5 10363 34768.5 607.76 1667.18
Amazon 4 0.47 1.14 0.13 0.53

5 218.53 160.12 7.58 31.47
DBLP 4 0.84 3.87 0.36 0.88

5 69 734 51.2 41.9
Patents 4 24.4 95 6.18 14.7

5 2867 24069 1680 748
Mico 4 28.2 111 9.65 16.7

LiveJournal 4 5286 19741 881 1081

TABLE II: Performance comparison between AutoMine, Pan-
golin, and Dryadic on motif enumeration in seconds.

DAF consumes on average 50X more memory than Dryadic.
DAF requires about 16GB memory to process LiveJournal,
while the graph data consumes only 296 MB. In comparison,
Dryadic only requires 323 MB for the same workload. Second,
DAF incurs a large number of recursive calls. For example,
DAF reports about 447M recursive calls when running q5 on
LiveJournal, but Dryadic’s nested loop does not invoke any
recursive functions.

C. Single-Machine Unlabeled Pattern Matching

We compare Dryadic (both its compilation mode, Dryadic-
C, and its Galois-based interpretation mode, Dryadic-G) with
AutoMine and Pangolin. To evaluate these systems’ capability
of performing multi-pattern matching, we run size-4 and
size-5 motif enumeration (vertex-induced matching), which
enumerates all the embeddings for each connected pattern of
the given size. We omit the results when Pangolin times out at
ten hours. As Table II shows, Pangolin is the slowest system
due to its breadth-first execution, which needs to maintain all
enumerated sub-embeddings. Although both Dryadic-C and
AutoMine’s codes are generated, Dryadic-C is faster than
AutoMine in all runs with up to 42.8X speedup (Motif-
4 on WikiVote). This is mainly because AutoMine suffers
from redundant set operations, while Dryadic eliminates such
redundancy. Dryadic-G is substantially slower than Dyradic-C
in most runs due to its runtime overhead except for the largest
graphs where the fine-grained stealing produces the largest
benefit.

Figure 9 shows the results of finding cliques of 3 different
sizes. Results for some experiments are omitted because
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Fig. 9: Performance comparison between AutoMine, Pangolin,
and Dryadic on clique finding. The two missing bars indicate
that the corresponding experiments for Pangolin run out of
memory.

Graph Dryadic-C PGD
WikiVote 0.1 0.22

Enron 0.13 0.26
Amazon 0.04 0.21
DBLP 0.08 0.31
Mico 0.4 2

Patents 0.96 14.84
LiveJournal 19.96 260.5

TABLE III: Performance comparison between Dryadic and
PGD on size-4 motif counting in seconds.

Pangolin ran out of memory. Pangolin is again the slowest
system but the performance gap between it and other systems
is smaller. The major reason is that for single-pattern matching
Pangolin does not incur as much space overhead as for
multi-pattern matching. Since AutoMine applies an aggressive
optimization to load only half of the data graph, it is faster than
Dryadic-C in 7 out of 8 experiments due to its better cache
performance from the smaller working set. Despite running
on the entire graph, Dyradic-C outperforms AutoMine for
most heavy workloads by up to 2.1X (size-5 clique finding
on LiveJournal).

Table III shows the performance comparisons between
Dryadic-C with PGD, a state-of-the-art manual implemen-
tation of size-4 motif-counting. The results on Orkut and
Friendster are omitted because PGD times out at ten hours.
Both Dryadic and PGD count the embeddings of rectangle and
size-4 clique patterns, and use the same formulas to derive the
counts of the other patterns (details of the formulas in [2]).
The performance improvement of Dryadic-C over PGD ranges
from 1.97X to 15.5X with an average of 5X. Observe the
trend that the performance gap tends to widen with larger
input graphs. The advantage of Dryadic over PGD comes
from two sources. First, Dryadic uses symmetry breaking
to avoid over-counting, while PGD may identify the same
embedding multiple times. Second, Dryadic’s code motion
eliminates all redundant set operations, which is not achievable
in PGD. Although one can manually implement Dryadic’s
optimizations in PGD, doing so requires significant effort and
is limited to one specific workload (i.e., size-4 motif counting).
In comparison, Dryadic’s approach is general and applies to
arbitrary patterns.

Fig. 10: Performance benefits from fine-grained stealing for
motif-4 enumeration.

(a) Clique 6 (b) Clique 8

Fig. 11: Level distribution of stolen sub-embedding trees.

a) Effects of Work Stealing.: Figure 10 shows the per-
formance benefits of Dryadic’s fine-grained work stealing on
motif-4 enumeration. The speedup due to work stealing is up
to 1.27X, demonstrating the serious load imbalance problem
across the embedding trees. We also use size-6 and size-8
clique finding on DBLP to investigate the efficiency of the
work stealing. Recall that the stealing runtime tries to steal
a sub-embedding tree rooted at the highest possible level
for each attempt. For each run, we record the root level
of each stolen sub-embedding tree. Figure 11 reports the
level frequency distribution. For size-6 clique finding, 69%
of the sub-embedding trees are rooted at level 1. On average,
sub-embeddings rooted at higher levels should be larger, so
stealing at higher levels minimizes the relative synchronization
overhead of stealing.

Fig. 12: Performance comparisons between Dryadic and CECI
for distributed execution with 1, 2, 4, 8, and 16 machines.
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D. Distributed Unlabeled Pattern Matching

In this part, we compare Dryadic with CECI for distributed
execution. Since the released CECI system has bugs as men-
tioned earlier, we use its results collected on a 16-node cluster
in the paper [3]. Each node in the cluster has two 8-core Intel
Xeon E5-2650 CPUs and 128 GB memory. The CPUs are
comparable to the ones in our system. Though our system
has less memory, it should not affect the comparisons by
much because all the evaluated graphs can already fit in
memory. Figure 12 shows the performance benefits of Dryadic
over CECI on size-3 and size-4 clique finding using 1, 2,
4, 8, and 16 machines. Due to space limit, we omit the
results on other patterns, but they show similar trends. Dryadic
substantially outperforms CECI for all the distributed runs.
Using 16 machines, Dryadic is on average 20X and 6.7X faster
than CECI for size-3 and size-4 clique finding, respectively.
Dryadic’s single-node performance is much better thanks to
the aggressive optimization applied to the computation tree.
The sub-figures demonstrate the scalability of the two systems.
For size-3 clique finding, Dryadic and CECI have similar
scalability for Orkut and Friendster, achieving around 11X-
12X speedups by using 16 machines over one machine. But
CECI’s scalability on LiveJournal drops significantly beyond
four machines. A plausible reason is that CECI cannot well
address the load balance problem. For size-4 clique finding,
CECI has slightly better scalability for Orkut and Friendster,
but again fails to scale beyond four machines for LiveJournal.

V. RELATED WORK

General graph analytics frameworks. Numerous graph
processing systems have been proposed in recent years to
optimize irregular computation [46], [39], minimize communi-
cation [15], reduce redundant computation [52], and improve
locality [55]. However, such infrastructure-level optimizations
cannot take advantage of the unique properties of graph pattern
matching workloads. As shown by the Galois backend in
Dryadic, a promising direction is to integrate Dryadic with
those systems for them to complement each other.

Labeled pattern matching. Practical graph pattern match-
ing can be traced back to Ullmann’s backtracking algo-
rithm [51], which proposes the basic approach to iteratively
matching pattern vertices based on certain orders. A number
of studies follow it to optimize the matching orders to improve
performance [10], [44], [58], [34]. As pointed out by Lee [27],
the best matching orders depend on the local topology and
label distribution within a data graph. Inspired by this finding,
TurboIsO [19] and CFL-Match [4] build a query tree using the
given pattern and adaptively change the matching order within
the same run. However, the query tree introduces numerous
false positives and hence redundant computation. DAF [18]
addresses this problem by performing matching through a
DAG based on the pattern while still supporting adaptive
matching orders. Dyradic uses a static matching order and
focuses on optimizing the computation tree instead of input
adaptation, but it is interesting to combine the two methods in
the future.

Single-machine parallel pattern mining. Many studies
focus on parallel execution efficiency for graph pattern match-
ing [22], [47], [48]. Chen et al. [8] identifies that a critical rea-
son for existing systems’ poor performance is their inefficient
implementations of parallel operations and data structures.
They closely integrate the Pangolin system with the Galois
engine to outperform several systems, including G-Miner [5],
Kaleido [57], and Fractal [11]. However, Pangolin’s breadth-
first execution does not exploit the structure of the given
patterns, which is to some degree addressed by AutoMine [32]
and Peregrine [20].

Distributed pattern matching. Thanks to the massive
parallelism in graph pattern matching, many systems use
a distributed system to accelerate the execution. A popular
approach is to duplicate the data graph in each node and
focus on load balancing for optimization [49], [3]. RADS [41]
partitions the graph into multiple machines, which employs
a framework of region-grouped multi-round expand verify &
filter to reduce communication and minimize the intermedi-
ate result storage. BENU [54] implements a global caching
technique to exploit data sharing. Lai et al. [26] use the
Timely dataflow system [35] to evaluate multiple graph pattern
matching algorithms and propose a practical guide.

Continuous pattern matching. Fan et al. [13] propose
the first system for continuous graph pattern matching for
dynamic graphs. Given an edge change, the system computes
the largest subgraph, whose vertices and edges may form
embeddings with that change, and runs the pattern matching
algorithm on that subgraph with the change. GraphFlow [21]
supports continuous pattern matching in a graph database.
Different from these two systems, SJ-Tree [9] aggressively
stores the intermediate results to improve responsiveness, but
is impractical to process large graphs. TurboFlux [23] strikes
a better trade-off between space overhead and responsiveness
thanks to its data-centric graph structure to more efficiently
store and update the intermediate results. Extending Dryadic
to handle dynamic graphs is an interesting research direction.

VI. CONCLUSION

A number of graph pattern matching systems have been pro-
posed in recent years. We showed that they are all specialized
for certain settings and no system consistently outperforms
the others. We argued that a systematic approach is needed to
build a flexible and efficient graph pattern matching system.
We presented, Dryadic, a graph pattern matching system, the
techniques in which are centered around a powerful interme-
diate representation. Extensive experiments showed that the
backends in Dryadic enable it to substantially outperform five
state-of-the-art graph pattern matching systems.
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