
ELIχR: Eliminating Computation Redundancy in
CNN-Based Video Processing

Jordan Schmerge, Daniel Mawhirter, Connor Holmes, Jedidiah McClurg, Bo Wu
Dept. of Computer Science
Colorado School of Mines

Golden, CO, USA

Abstract—Video processing frequently relies on applying con-
volutional neural networks (CNNs) for various tasks, including
object tracking, real-time action classification, and image recog-
nition. Due to complicated network design, processing even a
single frame requires many operations, leading to low throughput
and high latency. This process can be parallelized, but since
consecutive images have similar content, most of these operations
produce identical results, leading to inefficient usage of parallel
hardware accelerators. In this paper, we present ELIχR, a
software system that systematically addresses this computation
redundancy problem in an architecture-independent way, using
two key techniques. First, ELIχR implements a lightweight
change propagation algorithm to automatically determine which
data to recompute for each new frame based on changes in the
input. Second, ELIχR implements a dynamic check to further
reduce needed computations by leveraging special operators in
the model (e.g., ReLU), and trading off accuracy for performance.
We evaluate ELIχR on two real-world models, Inception V3
and Resnet-50, and two video streams. We show that ELIχR
running on the CPU produces up to 3.49X speedup (1.76X on
average) compared with frame sampling, given the same accuracy
and real-time processing requirements, and we describe how our
approach can be applied in an architecture-independent way to
improve CNN performance in heterogeneous systems.

I. INTRODUCTION

Image processing using convolutional neural networks
(CNNs) is an increasingly popular technique to address the
growing amount of video data obtained from a variety of
camera sources. Its accuracy and versatility have been noted
for a wide variety of applications [1], [2], [3]. However, a CNN
typically consists of tens or hundreds of layers, requiring a
significant number of operations for processing even a single
input frame. This often makes the approach impractical for
real-time processing, especially as the quality and quantity
of cameras increases. Ultimately, new techniques that support
efficient video processing using CNNs are needed to efficiently
extract meaningful results from these large data streams.

Most video applications use CNNs in a naı̈ve way by
running the model repeatedly on each frame (or a selected
subset of frames). However, in practice, similarities in adjacent
frames can be significant, e.g., in an input stream generated
from a surveillance video. In some extreme cases, no changes
may have occurred, meaning all computation is redundant,
resulting in poor performance even when utilizing parallel
hardware accelerators. More commonly, most parts of adjacent
frames stay the same, with changes only affecting small

regions (e.g., a pedestrian moves to a slightly different lo-
cation). Since there are typically many operations in the CNN
model that only traverse small local regions of the input (e.g.,
2D convolution), the computations on the unchanged regions
produce identical results, and do not need to be repeated.

This redundancy in video streams is well-known, and is one
of the key drivers of techniques such as compression. Finding
differences between images is not conceptually difficult, but
significant challenges arise from identifying changes that are
large enough to impact the inner layers of a CNN, eventually
affecting the overall output of the model. Part of this difficulty
stems from the fact that the inner workings of the model
parameters may not be well understood, leading CNNs to
often be viewed as “black boxes”. For example, pixel values
often vary due to input image noise, even if the image
itself does not appear to have changed to the human eye.
This makes it difficult to distinguish important changes from
irrelevant ones, as we would not expect variations caused
by typical image noise to change the final result, but we
would expect the appearance of a new object to be recognized.
However, despite this distinction being straightforward for a
human, noise can lead to significant computational overhead
as redundant computations will propagate through the layers of
the CNN if not addressed. The input image is the input to the
first layer, and each output from a layer is the input to the next,
so the chain of dependencies is clear, but any inefficiency in
finding the important changes for the input image will lead to
additional overhead on each subsequent layer. This motivates
our need to better understand how local changes propagate
through the layers of the CNN.

The most basic approach for handling redundancy is to sim-
ply reduce the frame rate at which input images are sampled,
in order to reduce the total amount of computation done for
an input stream, and increase the likelihood that a meaningful
change has occurred. For the most part, this sidesteps the issue,
leaving many opportunities for performance improvement.
Beyond this, prior work has already identified the importance
of efficiently retaining intermediate results, which are internal
computations produced by a CNN layer for use by the next.
Existing techniques include approximation approaches, such
as linear quantization [4] or vector centroids [5] to iden-
tify similar intermediate results, but these can suffer from
inaccuracy. Another approach tracks changes at each layer,
introducing more overhead [6]. What these approaches lack is

1



a lightweight and precise way to accurately track changes in
the intermediate layers of the network.

Instead of rounding intermediate values or modifying the
network, we propose a new approach called ELIχR to keep
track of all relevant changes with a set of bounding boxes. By
using a threshold to determine what changes are meaningful
enough to track, ELIχR can trade accuracy for throughput in
a controlled manner. In this approach, we perform an initial
complete CNN inference, and save the output values of each
layer for future use. With these intermediate results saved,
ELIχR can make small updates in place without needing to
compute or modify values that are unchanged. Because each
layer expects a certain size input on each run of the model,
all of the values must be passed whether they have changed
or not, so we cannot simply pass only the changed values.
For this reason, it is critical to save intermediate results from
the prior run, as this is the only way to maintain a properly-
functioning CNN while enabling local updates.

ELIχR’s key insight is its lightweight approach to bound the
changes, which are captured by statically-computed bounding
boxes. Equally important is its ability to track those changes
through the layers by a propagation step. Once the input
bounding boxes and the network layers are known, the size
and location of the bounding boxes on every layer can be
calculated based on the operators that make up the network.
This ensures that all computations depending on changed
results will be computed and updated, while the rest can be
ignored. Given a perfect set of bounding boxes, computing the
results they contain leads to no loss in accuracy compared to
a full run containing extensive redundant computation.

In addition to our static bounding boxes and their propaga-
tion across layers, we also develop a dynamic technique that
attempts to reduce the size of these boxes at runtime. Because
the static propagation is conservative by nature, it is fruitful to
check whether a box may actually be larger than necessary by
comparing its values to the stored intermediate results that are
already saved. We carefully chose to implement this technique
after a rectified linear unit (ReLU) layer, because the ReLU
function can only return 0 if the input is negative, or the
original value if it is positive. Because of this many-to-one
relationship, negative values that may have varied substantially
all become zero, increasing the chances of being able to shrink
a bounding box. If many intermediate results are identical,
they will lead to redundant computation, so the bounding box
can shrink to include only the relevant values. This technique
helps ELIχR adapt to a given input at runtime and contributes
significantly to the overall achieved speedup.

We test ELIχR with two real world CNNs, Inception V3
and Resnet-50, and use two real world video streams as their
input. These experiments are able to show a clear tradeoff
based on the required accuracy and desired sampling rate.
We show up to 3.49x speedup running on the CPU, with a
controllable loss in accuracy compared to frame sampling.
Even with busy input streams and complex real world models,
ELIχR still shows a significant improvement over the basic
uniform sampling approach. Our approach is not architecture-

Fig. 1: Two sample frames from a “town plaza” scene. Even
though many objects are moving, the overall change between
images is still relatively small (third image shows difference).

specific, and offers further improvement on heterogeneous
architectures, especially when parallel hardware accelerators
are available—not only can many frames be processed in
parallel, but our approach can ensure that batches of non-
redundant operations are supplied to the accelerators.

Our contributions are as follows. We introduce ELIχR, an
inference framework that can take a user-defined accuracy loss
and sampling rate, and automatically process the stream. We
make use of our new static and dynamic recompute techniques
to calculate the relevant changes, while automatically ignoring
the redundant computation. We also give insight into trad-
ing accuracy for performance, and characterize the situations
where our approach can offer speedup.

II. CNN BACKGROUND

Before describing our approach, we begin with some back-
ground on CNNs and video processing.

2



8 24 15 100 5

14 40 20 45 22

77 11 16 34 47

98 43 40 8 61

17 26 22 71 55

1 -3

2 1
4 79 -200 197

59 18 -49 94

283 89 2 -30

29 -3 131 22

4 79 0 197

59 18 0 94

283 89 2 0

29 0 131 22

79 197

283 131

Input

Convolution
Kernel: 2x2

Stride: 1
Padding: None Saved Intermediate

Results
Saved Intermediate

Results

Saved Intermediate 
Results

RELU

a) Initial Run

8 24 15 100 5

14 80 0 45 22

77 12 15 34 47

98 43 40 8 61

17 26 22 71 55

1 -3

2 1
44 139 -240 197

-60 119 -71 94

280 93 1 -30

29 -3 131 22

44 139 0 197

0 119 0 94

280 93 1 0

29 0 131 22

139 197

283 131

Next Input

Convolution
Kernel: 2x2

Stride: 1
Padding: None Updated Intermediate

Results
Updated Intermediate

Results

Final
Output

RELU Max Pool
Kernel: 2x2

Stride: 2
Padding: None

b) Recompute Run

44 139 0 197

0 119 0 94

283 89 2 0

29 0 131 22
Dynamic

Resize

Static Change Propagation

Max Pool
Kernel: 2x2

Stride: 2
Padding: None

Fig. 2: In (a), the input matrix is on the left, and the 2x2 kernel will be applied to produce the next input for ReLU, which
is then passed to the max pooling layer to produce the final output. In (b), the changed area (shaded region) changes size
based on the kernel, then passes through ReLU, before the dynamic recompute changes the area again, this time shrinking
it—because of some 0’s that are identical, and a several values that are within a threshold, the area can be shrunk before
moving to max pooling, and ultimately producing the final output with only a fraction of the computation.

A. Convolutional Neural Networks

CNNs are a subset of neural networks that are frequently
used for image processing, due to their versatility and ability to
build spatial understanding for an input. CNNs are typically
constructed from convolutions, using filters, pooling layers,
and non-linear activation functions. Convolutional layers have
a trained kernel of fixed dimension (typically in two dimen-
sions for image processing), which is multiplied element-
wise with spatially local pieces of the input. Dimensionality
of the output is determined by the size of the kernel, and
the stride at which the convolution is performed. Pooling
layers are frequently used to reduce dimensionality of in-
termediate results by distilling the local information so that
future convolutions can determine relationships across dis-
parate portions of the input more efficiently. Common pooling
operations include maximums or averages of a region of the
input. Activation functions are used to introduce non-linearity
into the CNN. Common activation functions include ReLU,
sigmoid, hyperbolic tangent, and derivative variations of these.
In this paper, we will primarily consider ReLU, which returns
max (0, input). A simple example of a portion of a CNN may
be found in Figure 2a.

Execution of CNNs is dominated by time spent on the
convolutional layers. These are typically executed using a two-
stage process of data reorganization and a dense matrix-matrix
multiplication. In the data reorganization stage, the current
filter window in the convolution is unrolled from its two-
dimensional organization into a row-vector in an input matrix.
Once all filter windows have been processed, the constructed
matrix may be multiplied directly against the filter matrix,
where each column-vector constitutes a filter, producing the

layer output. This process is demonstrated in Figure 3.

B. Video Processing

With the emergence of the Internet of Things (IoT), using
cameras for surveillance and other tasks has become a major
application of CNNs. CNN functionalities include object de-
tection, where the network is trained to build bounding boxes
around specific types of objects in each frame, and semantic
segmentation, in which each pixel is classified as belonging to
some output class. CNNs are often used to process each frame
completely, and are either applied to every frame or a subset
of frames based on a sampling rate. We expect the number and
size of CNN use-cases to increase, motivating the development
of advanced systems to execute them more efficiently.

III. MOTIVATING EXAMPLE

A. Redundancy in Video Streams

Modern cameras frequently produce high resolution (e.g.,
1080p) streams at high frame rates (typically 30 fps or greater).
In this context, changes to the entire image tend to occur
infrequently. Consider the two example input images from
a test data stream in Figure 1. These images, taken about
a second apart, and having dozens of intermediate frames,
are highly similar, with the majority of pixels not having
undergone significant change—in practice, these pixels are
often part of the background or a stationary object, so no
new information is needed about them. Pixels primarily change
values when (1) a new object is being represented in the image,
or (2) the value has modulated due to image capture noise.
which is a common phenomenon due to imperfect analog input

3



cameras. While changes due to noise are often not noticeable
to the human eye, the actual pixel values can vary significantly.

Regardless of the reasons for differing pixel values, these
must be considered when performing an inference for the
model. If the first layer of the model were fully connected,
meaning each input value affected every output value, then
even a single pixel changing by a small amount could ac-
count for significant changes, which could propagate through
the layers and result in large changes later in the network.
However, as described above, CNNs perform computations
and understand relationships locally over the dimension of a
kernel, meaning that regions having no changes will give the
same results as the previous run, and will have no cascading
effects. Therefore, computing them is entirely redundant, as
seen in Figure 2b. The kernel will be convolved across the
input, once for each value in the output matrix. Regions of
change will clearly need to be recomputed with the new values,
and can be seen in the shaded regions, but if these regions
are sparse, a significant amount of computation can be saved.
In theory, if all of the changed regions are fully tracked and
recomputed, there would be no loss in accuracy while still
reducing computation.

B. Opportunities

To reduce computation, the framework only needs to unroll
patches if they have been impacted by a change in input value.
This will be determined initially by the bounding boxes created
on the input image, and later by the propagated boxes from
our static recompute technique. We will also refer to this as
change propagation, an example of which can be seen on the
convolution layer in Figure 2b as the box changes size. If
a large portion of the input has remained unchanged, we can
significantly reduce the size of the input matrices. In Figure 2b,
there would only be 9 rows in the input matrix instead of the
16 that would otherwise be needed to compute the output of
the layer, cutting the number of operations by nearly 50%. This
can be reduced further after a ReLU layer, as some negative
values may have become zero, allowing us to further shrink
the box to save computation later.

C. Challenges

Some practical engineering problems exist that complicate
implementation. It is necessary to develop rigorous methods to
correctly propagate the changes across layers, prevent bound-
ing boxes from growing incrementally larger, and discriminate
input image noise from the change in signal. If the process to
determine which patches need to be computed were to intro-
duce significant overhead, general matrix multiply (GEMM)
savings may be eliminated. Since CNNs do reduce spatial
dimensionality with strides and pooling layers, minimizing the
growing effects of this process can help ensure that speedup
occurs in all layers of the network. Since camera noise is
a common occurrence, poor determination of which pixels
have changed due to noise can force significant redundant
computation, dramatically reducing the speedup.

Fig. 3: Convolutions implemented as an unrolled matrix mul-
tiplication. This figure shows all patches that touch the upper
left 2x2 area—as the kernel is convolved, it will unroll each
of these patches and add the rows the matrix. Then these row
vectors will be multiplied by a column vector that represents
the values of the kernel filters to produce the overall output.

IV. ELIχR: ELIMINATING REDUNDANCY

We first present our system at a high level by discussing the
main components before explaining each in more detail. When
the system first starts on an input stream, it executes a full
run using the standard CNN computation. For the first image
examined, there is nothing to compare to, and no computation
is redundant. During this run, the first image is saved along
with all intermediate results, so that they can be utilized on
subsequent runs.

When processing the next image, new opportunities arise.
First, change detection will occur to understand what areas
need to be recomputed. This will be manifested as a set of
bounding boxes that contain all the relevant changes. Any
computation outside these bounding boxes is now known to
be redundant and can be ignored. Instead of wasting cycles to
compute these results, the intermediate results that were saved
before can be used instead. These boxes will move through the
layers based on our static recompute method that propagates
them across layers, in turn showing each layer the computation
that needs to be done. These updates will then locally be
inserted into the existing intermediate results to produce the
new output.

These bounding boxes can change size based on the con-
volution and pooling layers, and may also be shrunk by our
dynamic recompute method that occurs after a ReLU layer. In
addition to taking a CNN model and input frames from the
user, our system can also take a maximum loss and maximum
stride. This will guide the system to profile some sample
frames and select a stride that will be used to process all the
frames in the input. After discussing each piece in detail, we
will analyze and discuss the results of our experiments.

A. Change Detection

Having done a full run for the first image, only the changed
regions are of concern for subsequent runs. Using the previous
and current images, the goal of our change detection algorithm
is to create a set of bounding boxes that capture all the changes

4



with minimal excess. We care about these changes exclusively,
because only computations within these bounds can cause
updates to previous intermediate results.

In order to do this, the image is first treated as a series
of smaller boxes. In order to mitigate the effects of noise on
one pixel, all pixels in the box will be considered together. If,
on average, all the pixels in the box have changed more than
a threshold, that box will be marked as needing an update.
To further mitigate noise, a 3x3 Gaussian blurring kernel is
used, so that nearby pixels can be factored into deciding how
much a single pixel has changed. The fact that the whole
box is being considered together ensures that this approach
effectively handles noise.

The threshold to decide if a box should be updated is based
on the average change of all pixels in the image. This is
quickly computed beforehand for each new image, so that
it can be adaptive to different levels of change. We make a
general assumption that important changes will exceed this
threshold. When this step is complete, there is a grid of boxes
with some marked for updating. Next, we attempt to merge
some of these together to minimize the number of boxes we
must track. Boxes must be square or rectangular, as they are
defined with an x-y coordinate for their top left corner and
dimensions for that box. We use a straightforward algorithm
to merge nearby boxes, trading simplicity for optimal merging.
Once this is complete, our system takes this set of bounding
boxes and the input image, and begins inference.

B. Static Recompute

Our static recompute technique was motivated by the need
to fully understand how changes could move through the
network. By quantifying what computations these changes
could affect, we can properly do partial computation on each
layer, even as these changes propagate. To see how this works,
first recall the bounding boxes that were created in the change
detection step above. If all operations were simple mappings
like ReLU that did not change the layer size, then the boxes
created previously would be acceptable to use for the whole
run. However, operations that have kernels, like conv, max
pool, and avg pool, frequently change the size of the layer,
thus changing the size of the bounding boxes. This is shown in
Figure 2b, where the shaded area represents the changed area.
Note the size and location are not the same after the kernels
are applied for convolution or max pooling. To visualize how
this algorithm works, consider the set of all patches that would
be produced by convolving the kernel across the entire input.
The algorithm selects only the patches that would have at least
one value in the area of a bounding box. These patches map
directly to the output values that will be produced as input
to the next layer, so they must be computed and inserted into
the prior intermediate results. Additionally, because they were
computed with new values, they should become part of the set
of boxes that propagate to the next layer.

These boxes frequently grow depending on the filter size,
stride, and padding of the layer, so the algorithm must be
able to map any set of boxes to the corresponding input

patches. Since the next layer can be a different size, the boxes
should also change size to capture all values that were updated
because of the bounding boxes on the last layer. Our work
modified the operators to do the partial computation with
these boxes, and built a function to propagate these boxes
across the layer. This propagation is what CBInfer [6] calls
“worst case change propagation”, essentially considering every
possible patch that could touch a changed area. A key part of
our reasoning for developing this algorithm and accepting its
overhead is that these static boxes and change propagation
give a much faster way to determine where our layers should
focus, even allowing all later boxes to be computed statically
based only on the input change detection and given layers of
the model. This tradeoff allows us to avoid performing real
time change detection on each layer, which is the only other
alternative. Our static technique is key to obtaining speedup,
and is crucial for enabling our next technique.

C. Dynamic Recompute

When developing our system, we understood that our static
recompute technique meant the bounding boxes were being
propagated in a worst-case manner, and were possibly leaving
some performance on the table. Without any intervention, the
boxes will generally continue to grow as execution moves
deeper through the network. Larger boxes means more compu-
tation, and less speedup. Our insight is that in some cases, we
can shrink the perimeter of these boxes without introducing
a significant amount of error, by using previous intermediate
results again. By comparing values to their counterparts on the
last run, we can see how much they have changed over the
course of the current run, to see if shrinking the box would
be possible.

One of the main reasons that values may be similar is that
noise in the input image can force our early boxes to be larger
than needed. The effects of noise are often reduced further into
the network after many kernels have been applied. Another
possibility is that many values may have been negative, but
these will become zero after a ReLU layer. Regardless of the
magnitude of the negative value, ReLU causes both to become
zero. With this mind, we use another threshold to shrink a
box to its minimum size. This threshold is necessary because
floating point values may naturally vary, and forcing values to
be identical removes much of the potential.

A box can only be shrunk by an entire row or column at
a time, since each box must maintain its rectangular shape.
Because of this shrinking, dynamic recompute can contribute
speedup on top of what the static idea could do on its
own. Carefully shrinking boxes will allow subsequent matrix
multiplications to be smaller in future convolutional or pooling
layers. Stated another way, the static boxes tell our recompute
engine where to work, while the dynamic method allows us to
keep that box as small as possible to further reduce overhead.

D. New Operations

In the base system, all operations were implemented to
compute on the full input of the layer, with no regard to

5



whether that computation was producing fresh or redundant
results. Therefore, modifications needed to be made at the
operator level to take advantage of the bounding boxes and
do the local updates correctly. At minimum, we still need the
ability to do the full computation on the very first run, so the
original compute method is clearly still needed. Therefore,
both methods coexist, the first doing the computation as the
original system did, and the new mode doing recomputation
given a set of bounding boxes. For the recompute mode, the
layer can map the inner areas of those boxes to the relevant
input values. For example, on a convolution layer, this means
finding all the input patches that touch a particular bounding
box (see Figure 3). This is repeated for each box, as there will
frequently be more than one. Only these patches need to be
considered—the rest can safely be ignored.

Since there is a one-to-one mapping between input patches
and output boxes, our system actually uses the boxes from
the next layer to determine the relevant patches. Max and
average pool are implemented very similarly because they do
their computation with similar kernels. In terms of mapping
the boxes to the input values, the mapping is computed on
the fly to avoid the memory overhead of storing a list of
patches. This also allows parallelization of the loops, as each
worker can manage a chunk of tasks, and compute its patch
number on the fly, removing any dependencies. ReLU is
simple, as it is only applied to individual values. Therefore,
it applies the ReLU function only to the values contained in
the bounding boxes, as they are the only ones that could have
changed. ReLU will also implement the dynamic recompute
technique for reasons discussed previously. It is important to
have the intermediate results from the last run, because the
final step of these modified operations is to do a partial update.
Specifically, the newly-computed values are overwritten into
the old intermediate results, and then all are passed together
to the next layer.

E. Other Considerations

There may be many bounding boxes that are moving be-
tween the layers. If at some point a single box fills the entire
layer, it is clearly redundant to keep track of all the other
boxes, so we eliminate them. In the case of 1x1 kernels with
a stride of 1, the function for change propagation does not
need to be called, as the layer and box sizes do not change,
just like for ReLU. Additionally, if enough of the input image
has changed, the overhead of the recompute strategy would
be too great. In that case, our system simply falls back on the
original method. Experimentally, this cutoff corresponds to the
current image having more than 50% of its pixels changed. As
other works have noted, subtle but continuing changes can be
a problem, as they may never exceed the threshold, but their
effect can still accumulate over time. To combat this and other
error accumulation, our system can periodically do a full run
between recompute runs to refresh its ground truth and ensure
that errors do not grow unchecked. This is currently set at
every 15 input images, but this can be tuned based on the
input stream, and the level of acceptable loss.

V. EVALUATION

We evaluate ELIχR using two real world CNN models:
Inception [7] and Resnet-50 [8], on frames from two different
input streams [9] [10]. We believe the structure of these
networks and the noise in the video data make this evaluation
representative of real-world workloads.

The baseline comes from a uniform sampling approach
which processes a subset of the frames using a fixed-time
stride. Both uniform sampling and partial recomputation in-
troduce error, and this evaluation will test a range of sampling
strides and recompute thresholds to explore the trade-offs
between them. We run all of our experiments on a system
running Ubuntu 16.04 with an Intel Xeon E3-1286 v3 and
32GB of memory. We focus on CPU performance based on
the real use cases described in [11], [12].

A. Approaches

When running a full image model on every frame of a
video becomes too expensive, the simplest way around the
problem is to run on only a portion of the frames. It is
reasonable to expect a maximum bound on how many frames
can safely be skipped—we call this a realtime requirement.
By performing the computation on every nth frame, uniform
sampling assumes the result for every skipped frame is equal
to the result of its most recently sampled frame. As long as the
image sequence always changes slowly, this can be a viable
strategy. CBInfer [6] uses an approach which is a combination
of our change propagation and dynamic recompute steps,
but our static approach and combination of techniques is
unique in the literature, to the best of our knowledge. Our
system’s approach leverages the static approach of uniform
sampling alongside a dynamic approach which detects and
recomputes changing parts of the stream. This hybrid approach
is expected to decrease the average processing time per frame
while maintaining high accuracy, which uniform sampling can
struggle to accomplish. The reported execution times include
all overhead for change detection as well as the static and
dynamic computations to make an end-to-end comparison.
We parameterize our system according to an error target and
maximum stride to enable user configuration.

B. Theoretical Performance

Given a maximum acceptable error target, selecting a stride
for uniform sampling is still difficult, as it depends on the input
data. To obtain the theoretical peak performance of uniform
sampling, we allow an oracle to run the input with all possible
strides, and record the error, noting that the highest stride
achieving a particular error target has the highest performance.

Comparing to this theoretical peak for sampling, Figures 4
through 7 show the trade-off for each model and input stream
combination according to the recompute parameters. The error
targets on the y-axis come from the error range that our recom-
pute sampling can achieve, the x-axis bounds the stride to a
maximum value, and the darkest areas mark conditions under
which recomputation cannot offer speedup. Such conditions
occur in Figures 4, 6, and 7 only in the lower-right area when

6



the error target is tight, but a relatively high stride can still
achieve the target. This limitation is expected, as skipping
large amounts of computation offers substantial performance
advantages, and even the process of difference checking can
become a performance limitation. Any time recomputation is
triggered, our system will spend some time on that frame, but
in the case where changes are insignificant, the result may still
be comparable. The lighter horizontal band in the middle of
Figure 5 has a more interesting cause. Since the peak error of
uniform sampling can vary substantially with small changes in
stride, a small change in error target can substantially change
the feasible strides for a particular input. These jumps can
produce bands in the data for which uniform sampling can
perform very well, and the recomputation cannot keep up.
Even with these scenarios considered, our system produces
an average of 1.76X speedup (up to 3.49X speedup) over the
best case for uniform sampling. Additionally, we note a stride
of 1 in the uniform sampling approach would correspond to an
unmodified CNN executing on all frames and in all cases we
can see a strong improvement indicated by the bright yellow
column on the left of all plots.

C. Real-World Performance

Our theoretical analysis cannot lead to a feasible approach
for a real system, as the oracle will not be available to make
perfect decisions. To make this system usable, we added the
ability for our system to select strides automatically. For both
approaches, our framework allows a user to specify an accept-
able error and a maximum stride. This stride should be based
on the expected rate of changes in the stream, as it should
be frequent enough that nothing can go undetected between
inference runs. Given this, our system will automatically select
a stride that is less than or equal to the maximum stride. The
goal is to pick the largest stride that will satisfy the accuracy
requirement, as fewer runs will require less execution time. To
make this decision, we test over a range of strides and then
measure the relative error of the output vectors compared to
the ground truth.

Skipping images introduces some error for the frames that
are not processed. In order to select a stride, our system takes
a sample of frames, ideally as representative of the stream as
possible, and computes the ground truth frames as well as the
output from the uniform or recompute approach. It quickly
computes the relative error between the output vectors, using
the most recently computed output in cases where a frame
was skipped. This error is averaged over all the frames and
compared to the user specified requirement. If it is below,
we increment the stride and try again. Once the error is
exceeded, we select the previous stride. Processing images
more frequently than the user-specified maximum stride is
acceptable, if necessary to meet the accuracy requirement.
While our loss estimate cannot have guaranteed accuracy, we
believe it can be tuned in a real system to provide reasonable
results. It will become more accurate as the sample frames
become more representative, and with this selected stride, our
system can proceed to process the entire stream.

Fig. 4: This plot shows the tradeoff between stride and
accuracy for the Inception Model on the Parking Lot scene.

Fig. 5: This plot shows the tradeoff between stride and
accuracy for the Inception Model on the Town scene.

D. Convolution Layers

As part of our analysis, we wanted to carefully understand
where our speedup was coming from, and if our intuition was
correct that our methods could be effectively implemented on
convolution operators. As previously discussed, convolution
layers dominate execution time for inference on CNNs. In
our experience, they account for about 85% of the execution
time and other sources in the current literature show similar
results [6]. With this in mind, it is clearly most fruitful to
focus on improving the speedup of the part of our system that
dominates execution time. We measure the time to execute
each convolution operator in the network and consider the
speedup gained due to our static recompute technique. This
can be seen in Figure 8. The idea clearly shows substantial
improvement on the early layers, but because of the boxes
growing relative to the layers, a clear downward trend of the
speedup for each of the 94 convolutions can be seen.

This is where the motivation for our dynamic recompute
technique arises. In Figure 9 a more sustained speedup can
be seen, due to shrinking the boxes as the layers progress.
Figures 10 and 11 show the same plots for Resnet, and a
very similar trend appears. This shows that the idea is effective

7



Fig. 6: This plot shows the tradeoff between stride and
accuracy for the Resnet-50 Model on the Parking Lot scene.

Fig. 7: This plot shows the tradeoff between stride and
accuracy for the Resnet-50 Model on the Town scene.

for the layers that dominate execution time, and can therefore
contribute to speeding up the execution of the model overall.

The static recompute is also implemented for the max
pooling, average pooling, and ReLU layers. Because max and
average pooling do local computation with a kernel sized
chunk of input and ReLU is very easy to localize, these layers
will also benefit from these techniques. Because of this, a
speedup is also expected in these layers, but it will clearly be
less significant overall since all other operators are only about
15% of the total execution time. Therefore we do not show
layer-by-layer speedups separately due to space. It is important
to consider that these speedups may become more significant,
as the already-noted improvement of the convolutional layers
means they will no longer dominate execution time as much,
causing speedups in other areas to become more significant.

VI. FUTURE WORK

We believe that this work is an important step towards
mitigating problems related to redundancy in video processing,
but there are several potential directions in which this work
could be extended.

• There may be a better way to detect and merge boxes
on the input layer. The performance of our system is

Fig. 8: This plot shows the speedup of each individual convo-
lution layer in the Inception network for the parking lot scene.
Only the static recompute technique was used.

Fig. 9: This shows the speedup of each layer again with both
the static and dynamic recompute techniques enabled.

heavily tied to the size and count of the bounding
boxes, and having fewer and smaller boxes can improve
speedup significantly. Because of input noise and the
complexity of non-rectangular bounding boxes, we leave
this topic for future exploration. One disadvantage of
tracking bounding boxes is the associated space overhead.
However, if reducing computation is more important than
memory usage, this tradeoff may be acceptable.

• There are many experimentally-chosen parameters in our
system that could possibly be tuned in a more rigorous
way. This includes the cut-off threshold that decides when
to do full recompute, the static threshold used to detect
changed boxes on the input layer, the size of those boxes,
and the dynamic threshold used when shrinking boxes.
That being said, achieving our accuracy targets while still
providing speedup strongly indicates that we have used
reasonable values for our experimental setup.

• We hope to further integrate the ideas described in this
paper into other applications, like an automated compiler
or full object detection framework. While our prototype
system is approaching this stage, more operators are

8



Fig. 10: This plot shows the speedup of each individual
convolution layer in the Resnet-50 network on the town center
scene. Only the static recompute technique was used.

needed to make the system fully general. Object de-
tection, as seen in [13], [14], [1] makes heavy use of
CNN models, and our approach could be integrated into
a system like those.

• While our experimental evaluation focused on perfor-
mance of our approach on a CPU, our techniques also
extend naturally to heterogeneous architectures. Specifi-
cally, we currently perform a full computation every 15
frames to mitigate error propagation. All inferences done
between full computes are recompute runs that leverage
the intermediate results of the previously-processed im-
age. If parallel hardware accelerators are available for
inference, then there is an opportunity to do all interme-
diate recompute runs in parallel by dispatching frames to
different coprocessors in realtime. The central compute
node would be responsible for doing the sparsely-needed
full runs, as well as dispatching tasks. A dispatch would
consist of an input image on which to run inference, as
well as the most recently computed intermediate results.
This would mean that all recompute runs use the first
computation as their baseline. The main consequence of
this is that it may cause some of the bounding boxes
to be larger than in our experiments, but the effects
of this should be offset by the parallel processing it
enables. In summary, this would allow the benefits of a
heterogeneous environment to mesh with the redundancy
elimination enabled by ELIχR.

VII. RELATED WORK

In this work, we have developed a purely-software approach.
There are other existing software approaches to address the
problem of redundancy elimination and performance improve-
ment of CNN inference. Some approaches use techniques
from more than one area, just as our approach leverages the
compilers-focused redundancy elimination technique. Finally,
we briefly discuss the works that are most similar to ours, and
explain how our approach differs.

Fig. 11: This shows the speedup of each layer again with both
the static and dynamic recompute techniques enabled.

A. Compiler Approaches

Early work has been done using compiler approach
Halide [15] to better understand and exploit the locality and
redundancy in image pipelines. Because of the complexity
associated with optimizing these kinds of workloads, the
compiler has been able to outperform even expert hand tuning.
More specific to deep learning, Latte [16] introduces a domain
specific language to allow users to express layers in a more
natural way without sacrificing performance. This work is
primarily concerned with expressing the model, whereas we
focus on inference of an already-trained model. Because
specialized hardware is becoming more prevalent, the ability to
compile with that hardware’s strengths and constraints in mind
is important, as in [17]. Since in this paper we focus on CPU
execution, most of the precision and limited functionality con-
cerns are different from ours, but the motivation of improving
performance for CNNs is similar. TVM [18] and DLVM [19]
also address the need to perform optimizations and produce
code for varied hardware backends in a safe and efficient
manner. They introduce techniques like operator fusion, and
can make changes to the computation graph. Intel has also
developed a compiler with similar goals that is specifically
for deep learning called nGraph [20]. These works apply to
similar workloads, but perform optimizations in ways that are
mostly orthogonal to our work.

B. Network Modification and Approximations

Another popular way to improve performance is via modifi-
cations to the network. Approaches vary, but examples include
changing the precision of floating point values in the network
or even changing the model itself. For example, a spiked
neural net [21] changes the weights and activations to be
more similar to the human brain, and may require much fewer
total operations to get its output. Some models [22] require
weights to be binary to save significant computation costs by
approximation convolutions. An approach leveraging spatial
and temporal redundancy is outlined in [23]. Here the authors
want to pass changes between layers, and use rounding instead
of needing to recompute each frame. In a paper on recurrent

9



scale approximations [24], the authors identify redundancy
when doing object detection. They develop a technique to
compute a feature map once, and use it to approximate future
computations. A unique way to approximate a CNN is to not
evaluate the CNN on all of the frames. In [25], the authors
choose to index each frame using a cheaper CNN and then
when querying the video stream, pull the frames corresponding
to that index, and run a more expensive CNN only on the
relevant frames. There have also been efforts to change certain
operators in the network to improve performance while main-
taining accuracy, like [26], which replaces certain bottleneck
convolutions with a redesigned one. [27] makes changes to the
training and execution of the network to improve performance
by deciding when (or if) a certain convolution kernel should
be applied to a given input. While all of these approaches
work to save computation and execution time, they tend to
introduce much more error than our approach, and may also
require changes to the network itself.

C. Hardware Approaches

Another area of research has been to focus directly on
hardware implementations to realize performance improve-
ment for CNNs. While high level goals may often be similar,
the implementation and results can vary considerably. EVA2

[28] proposes to use activation motion compensation to do
incremental updates based on the changes detected in related
images. In [4], they propose to reuse values that have not
changed significantly, but to improve the amount of com-
putation that can be reused, they apply linear quantization
to the intermediate results. This results in some error, but
greatly increases the amount of reusable values. In [29], the
authors realized that many values would be negative, and
further operations would be wasted because ReLU would set
the values to 0. They propose to reorder computations so that
a simple sign check could determine if computation should
continue. They also introduce an exact mode and an approx-
imate mode, and discuss the tradeoffs of introducing error
to gain performance. It is also possible to design hardware
to improve the performance of CNN inference, as in [30].
Finally, [31] proposes to evaluate CNN layers on an FPGA,
and allocate resources to different processors that are best used
for a certain type of layer. This leads to higher efficiency and
higher throughput when evaluating a complete model.

D. Software Approaches

The following works are the most similar to our software
approach. An early work that investigated the performance
of CNNs for vision tasks is DeepMon [32]. The authors used
GPUs to process certain layers in early CNN models. However,
they are more concerned with improving performance for
mobile applications than eliminating any inherent redundancy
in the inputs. NoScope [33] takes a different approach—the
authors identify that there may not be a need to evaluate a
complex model when certain situations may only see a limited
set of the possible classifications. They create a framework to
automatically train smaller and faster models and explore how

to decide which model to run. In a similar spirit, [34] chooses
to focus on a lower resolution image first and only use the
full high resolution image if needed, allowing for a possible
early exit from the network if classification confidence is high.
CNNCache [35] and DeepCache [36] choose to use a cache-
like mechanism that can identify similar regions and propagate
cached results to later layers. This can avoid the redundant task
of recomputing the outputs of those regions as the cached
values can quickly be accessed and used instead. [37] also
chooses to change how convolution is implemented, but with
a focus on redundancy across the color channels in an image,
while [38] learns to focus on only specific regions of the input
using trainable masks. In Deep Reuse [5], the authors also
look for similarities in intermediate vectors and propose to use
clusters and cluster centroids to save computation instead of
using the full vectors for all computations. The technique most
similar to ours is CBInfer [6]. CBInfer acknowledges what
we call static recompute as worst case change propagation.
Because of their focus on GPU computation of the layers, they
do not further investigate this idea. Instead, they do change
detection between the layers by parallelizing it with many
GPU threads. Our static and dynamic recompute methods
allow us more opportunities to quickly propagate the changed
areas and shrink them to avoid some of the overhead that the
CBInfer identifies as prohibitive.

VIII. CONCLUSION

In this paper, we have introduced ELIχR, a new framework
for performing inference on CNNs. With the introduction of a
complete system that implements a static recompute technique
to propagate bounding boxes across the layers, and a dynamic
technique to resize the boxes, we are able to track all relevant
changes in the network, and significantly reduce redundant
computation. Based on our experiments with two real world
CNNs and two real world input streams, we are able to show
up to 3.49X speedup (1.76X on average), and give greater
insights into trading accuracy for performance when executing
CNN inference.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
valuable comments. This work was supported by the National
Science Foundation under awards CCF-1823005, an NSF
CAREER Award (CNS-1750760), and CCF-2018910.

REFERENCES

[1] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017.

[2] A. Bhandare, M. Bhide, P. Gokhale, and R. V. Chandavarkar, “Applica-
tions of convolutional neural networks,” 2016.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017.

[4] M. Riera, J.-M. Arnau, and A. González, “Computation reuse in dnns
by exploiting input similarity,” in Proceedings of the 45th Annual
International Symposium on Computer Architecture, ser. ISCA ’18.
IEEE Press, 2018, pp. 57–68.

10



[5] L. Ning and X. Shen, “Deep reuse: Streamline cnn inference on the
fly via coarse-grained computation reuse,” in Proceedings of the ACM
International Conference on Supercomputing, ser. ICS ’19. ACM, 2019,
pp. 438–448.

[6] L. Cavigelli and L. Benini, “Cbinfer: Exploiting frame-to-frame locality
for faster convolutional network inference on video streams,” IEEE
Trans. Circuits Syst. Video Technol., vol. 30, no. 5, pp. 1451–1465, 2020.

[7] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with con-
volutions,” in 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015, pp. 1–9.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016, pp. 770–778.

[9] S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C. Chen, J. T. Lee, S. Mukher-
jee, J. K. Aggarwal, H. Lee, L. Davis, E. Swears, X. Wang, Q. Ji,
K. Reddy, M. Shah, C. Vondrick, H. Pirsiavash, D. Ramanan, J. Yuen,
A. Torralba, B. Song, A. Fong, A. Roy-Chowdhury, and M. Desai,
“A large-scale benchmark dataset for event recognition in surveillance
video,” in CVPR 2011, June 2011, pp. 3153–3160.

[10] B. Benfold and I. Reid, “Guiding visual surveillance by tracking
human attention,” in Proceedings of the 20th British Machine Vision
Conference, September 2009.

[11] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov,
M. Fawzy, B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis,
M. Smelyanskiy, L. Xiong, and X. Wang, “Applied machine learning
at facebook: A datacenter infrastructure perspective,” in 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), Feb 2018, pp. 620–629.

[12] M. Zhang, S. Rajbhandari, W. Wang, and Y. He, “Deepcpu: Serving
rnn-based deep learning models 10x faster,” in Proceedings of the
2018 USENIX Conference on Usenix Annual Technical Conference, ser.
USENIX ATC ’18. USENIX Association, 2018, pp. 951–965.

[13] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Region-based convo-
lutional networks for accurate object detection and segmentation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 38,
no. 1, pp. 142–158, Jan 2016.

[14] R. Girshick, “Fast r-cnn,” in Proceedings of the 2015 IEEE International
Conference on Computer Vision (ICCV), ser. ICCV ’15. IEEE Computer
Society, 2015, pp. 1440–1448.

[15] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe, “Halide: A language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines,”
in Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’13. ACM, 2013, pp.
519–530.

[16] L. Truong, R. Barik, E. Totoni, H. Liu, C. Markley, A. Fox, and
T. Shpeisman, “Latte: A language, compiler, and runtime for elegant
and efficient deep neural networks,” in Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, ser. PLDI ’16. ACM, 2016, pp. 209–223.

[17] Y. Ji, Y. Zhang, W. Chen, and Y. Xie, “Bridge the gap between
neural networks and neuromorphic hardware with a neural network
compiler,” in Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’18. ACM, 2018, pp. 448–460.

[18] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, “Tvm:
An automated end-to-end optimizing compiler for deep learning,” in
Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’18. USENIX Association, 2018,
pp. 579–594.

[19] V. A. Richard Wei, Lane Schwartz, “DLVM: A modern compiler
infrastructure for deep learning systems,” 2018.

[20] S. Cyphers, A. K. Bansal, A. Bhiwandiwalla, J. Bobba, M. Brookhart,
A. Chakraborty, W. Constable, C. Convey, L. Cook, O. Kanawi, R. Kim-
ball, J. Knight, N. Korovaiko, V. Kumar, Y. Lao, C. R. Lishka, J. Menon,

J. Myers, S. A. Narayana, A. Procter, and T. J. Webb, “Intel ngraph,”
SYSML, 2018.

[21] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and
A. Maida, “Deep learning in spiking neural networks,” Neural Networks,
04 2018.

[22] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,”
in Computer Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and
M. Welling, Eds. Springer International Publishing, 2016, pp. 525–
542.

[23] P. O’Connor and M.Welling, “Sigma delta quantized networks,” ICLR,
2017.

[24] Y. Liu, H. Li, J. Yan, F. Wei, X. Wang, and X. Tang, “Recurrent scale
approximation for object detection in cnn,” in 2017 IEEE International
Conference on Computer Vision (ICCV), Oct 2017, pp. 571–579.

[25] K. Hsieh, G. Ananthanarayanan, P. Bodik, S. Venkataraman, P. Bahl,
M. Philipose, P. B. Gibbons, and O. Mutlu, “Focus: Querying large
video datasets with low latency and low cost,” in Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’18. USENIX Association, 2018, pp. 269–286.

[26] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely
efficient convolutional neural network for mobile devices,” in CVPR.
Computer Vision Foundation / IEEE Computer Society, 2018, pp. 6848–
6856.

[27] N. Fragoulis, I. Theodorakopoulos, V. K. Pothos, and E. Vassalos,
“Dynamic pruning of CNN networks,” in IISA. IEEE, 2019, pp. 1–5.

[28] M. Buckler, P. Bedoukian, S. Jayasuriya, and A. Sampson, “Eva2:
Exploiting temporal redundancy in live computer vision,” in Proceedings
of the 45th Annual International Symposium on Computer Architecture,
ser. ISCA ’18. IEEE Press, 2018, pp. 533–546.

[29] V. Akhlaghi, A. Yazdanbakhsh, K. Samadi, R. K. Gupta, and H. Es-
maeilzadeh, “Snapea: Predictive early activation for reducing computa-
tion in deep convolutional neural networks,” in Proceedings of the 45th
Annual International Symposium on Computer Architecture, ser. ISCA
’18. IEEE Press, 2018, pp. 662–673.

[30] J. Jin, V. Gokhale, A. Dundar, B. Krishnamurthy, B. Martini, and
E. Culurciello, “An efficient implementation of deep convolutional
neural networks on a mobile coprocessor,” in MWSCAS. IEEE, 2014,
pp. 133–136.

[31] Y. Shen, M. Ferdman, and P. Milder, “Maximizing cnn accelerator
efficiency through resource partitioning,” in Proceedings of the 44th
Annual International Symposium on Computer Architecture, ser. ISCA
’17. ACM, 2017, pp. 535–547.

[32] L. N. Huynh, Y. Lee, and R. K. Balan, “Deepmon: Mobile gpu-
based deep learning framework for continuous vision applications,” in
Proceedings of the 15th Annual International Conference on Mobile
Systems, Applications, and Services, ser. MobiSys ’17. ACM, 2017,
pp. 82–95.

[33] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia, “Noscope:
Optimizing neural network queries over video at scale,” Proc. VLDB
Endow., vol. 10, no. 11, pp. 1586–1597, Aug. 2017.

[34] L. Yang, Y. Han, X. Chen, S. Song, J. Dai, and G. Huang, “Resolution
adaptive networks for efficient inference,” in CVPR. Computer Vision
Foundation / IEEE, 2020, pp. 2366–2375.

[35] P. Wang and J. Cheng, “Accelerating convolutional neural networks for
mobile applications,” in Proceedings of the 24th ACM International
Conference on Multimedia, ser. MM ’16. ACM, 2016, pp. 541–545.

[36] M. Xu, M. Zhu, Y. Liu, F. X. Lin, and X. Liu, “Deepcache: Principled
cache for mobile deep vision,” in Proceedings of the 24th Annual
International Conference on Mobile Computing and Networking, ser.
MobiCom ’18. ACM, 2018, pp. 129–144.

[37] J. Liang, T. Zhang, and G. Feng, “Channel compression: Rethinking
information redundancy among channels in CNN architecture,” IEEE
Access, vol. 8, pp. 147 265–147 274, 2020.

[38] T. Verelst and T. Tuytelaars, “Dynamic convolutions: Exploiting spatial
sparsity for faster inference,” in CVPR. Computer Vision Foundation
/ IEEE, 2020, pp. 2317–2326.

11


	Introduction
	CNN Background
	Convolutional Neural Networks
	Video Processing

	Motivating Example
	Redundancy in Video Streams
	Opportunities
	Challenges

	ELIR: Eliminating Redundancy
	Change Detection
	Static Recompute
	Dynamic Recompute
	New Operations
	Other Considerations

	Evaluation
	Approaches
	Theoretical Performance
	Real-World Performance
	Convolution Layers

	Future Work
	Related Work
	Compiler Approaches
	Network Modification and Approximations
	Hardware Approaches
	Software Approaches

	Conclusion
	References

