
Correct-by-Construction Network Programming
for Stateful Data-Planes

Jedidiah McClurg
Colorado School of Mines

Golden, CO, USA
mcclurg@mines.edu

ABSTRACT
As switch hardware becomes faster, more stateful, and more pro-
grammable, functionality that was once confined to end hosts or
the control plane is being pushed into the data plane. For example,
recent work on adaptive congestion control and heavy hitter detec-
tion uses stateful switches to implement sophisticated functional-
ity with only minor controller involvement. In applications where
correctness depends on individual switches making coherent deci-
sions, it is important that the switches have a consistent view of
global state. However, such a consistency requirement makes it dif-
ficult to maintain efficiency (high throughput), due to the CAP the-
orem. Moreover, previous work on data-plane programming pro-
vides little to no built-in support for addressing this difficulty.

We propose Callback State Machines (CSMs), a new high-level
declarative network programming abstraction which allows op-
erators to write correct data-plane programs against global state.
CSMs offer programmers useful consistency guarantees without
the need to manage how global state is replicated/updated at the
individual switch level. To aid in the implementation of this high-
level programming framework, we present a flexible new inter-
mediate representation (IR) called TAPIR that natively supports
stateful data plane functionality, as well as a compiler to generate
device-specific code such as P4 from TAPIR code. Additionally, we
demonstrate the power of TAPIR itself by using it to build a work-
ing implementation of the CONGA congestion control system.

CCS CONCEPTS
• Networks → Programming interfaces; Programmable net-
works; • Computer systems organization→ Reliability; • Soft-
ware and its engineering → Domain specific languages.

KEYWORDS
SDN, Petri nets, causal consistency, P4

ACM Reference Format:
Jedidiah McClurg. 2021. Correct-by-Construction Network Programming
for Stateful Data-Planes. In The ACM SIGCOMM Symposium on SDN Re-
search (SOSR) (SOSR ’21), September 20–21, 2021, Virtual Event, USA. ACM,
New York, NY, USA, 16 pages. https://doi.org/10.1145/3482898.3483362

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSR ’21, September 20–21, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9084-2/21/09…$15.00
https://doi.org/10.1145/3482898.3483362

1 INTRODUCTION
Software-defined networking (SDN) seeks to make networks more
programmable. Early realizations of SDN (e.g., OpenFlow) require
all state to reside on the controller—the switches effectively serve
as caches for static forwarding tables, which can be (re)populated
by the controller in response to network events. However, this
model is beginning to change. SDN data planes are becoming more
capable, with powerful devices emerging which are able to per-
form computations and update local state based on packet con-
tents, all at line rate [6, 8, 67]. This has fueled an increased interest
in pushing functionality which has traditionally been located on
end hosts or in the control plane into the data plane. Rather than
viewing a network program as simply a process that runs on the
controller and interacts with switches, we can now view it as a dis-
tributed system or data-plane program, running atop the network-
ing hardware.

Numerous types of data-plane programs can be found, both
in the networking literature, and also deployed in industrial net-
worked systems, such as:

• Congestion control — automatically adjusting forwarding
paths, based on measured congestion;

• Traffic management — optimizing performance of the net-
work along various quality metrics;

• Monitoring — performing accurate measurements of proper-
ties within the network;

• Active networking — allowing packets to carry small “pro-
grams” which are executed by forwarding devices as the
packet moves through the network; and

• Network OS/Runtimes— virtualization functionality built on
top of networking devices.

These applications are typically built in an ad-hoc way, using a
combination of switch- and host-level functionality tuned to a spe-
cific SDN installation. This opens the door for bugs in the imple-
mentation, and also makes it difficult to build and prototype new
systems based on current designs. We believe that a general and
highly intuitive approach for building correct and efficient data-
plane programs is needed to address these issues.

Unfortunately, prior work has not fully considered how to prop-
erly deal with global state in data-plane programs. There are two
main concerns when adding state into the mix: (1) consistency—
making sure that the program consistently maintains distributed
views of the state, and (2) efficiency/availability—making sure that
network performance is not penalized by maintenance of consis-
tent views of the state. The CAP theorem applies in this context
[58], meaning that there is an inherent tension between consis-
tency and efficiency (since partition tolerance is non-negotiable).

SOSR ’21, September 20–21, 2021, Virtual Event, USA Jedidiah McClurg

This paper focuses on building a network programming lan-
guage and runtime that abstracts away these concerns, and gives
programmers the right balance between consistency and availabil-
ity. A salient point here is that we cannot abstract away too much:
programmers still need to write distributed, asynchronous pro-
grams. This ability is needed to write programs that detect and
react to events such as attempted intrusion or congestion.

Our first key contribution is Callback State Machines (CSMs), a
declarative abstraction that can be used for describing network be-
havior. This abstraction is based on solid existing formalisms (dis-
tributable nets and event structures [5, 26, 73]) and combines the
intuitiveness of automata-based network programming languages
such as Kinetic [40] with the expressive programming constructs
in high-level languages such as SNAP [4]. It also inherits support
for formally specifying and verifying key program properties from
event nets [49]. It has the desired features we described above:
callbacks that are programmed against global state and run asyn-
chronously, without the need to specify the low-level details of
how the switches maintain consistent views of the global state.
Our second key contribution is Stateful Data-Plane Intermediate
Representation (TAPIR), a new intermediate representation (IR) for
stateful data planes. TAPIR allows operators to program in terms of
imperative stateful packet-processing functions, instead of think-
ing at the level of flow tables. Using IR-to-IR translation stages, we
show how to leverage TAPIR to build a compiler that produces ex-
ecutable code from CSMs. In this work, we target P4 switches [8],
but our compiler could be easily extended with back-ends for dif-
ferent architectures.The compiler performs the following transfor-
mations:

• CSM (callbacks that read/write global state)
↓

• (per-switch) TAPIR programs with global variables
↓

• TAPIR programs that read/write only local state
↓

• P4 programs that read/write only local state

Any of these levels of abstraction are available to the program-
mer, and in Section 5 , we show that programming with the lower-
level IR itself is straightforward, by using it to implement the
CONGA congestion control system. Our intent is for programs to
be written at the CSM level—this has the advantage of providing
the programmer with guarantees regarding the efficiency and con-
sistency of the program’s resulting data-plane implementation.

The consistency guarantee provided by CSMs is a form of causal
consistency, similar to one we described in previous work [51]—
causally-related events (ones that occur at the same switch, or as
a result of the same packet) are observed in the same order by
all switches. Although this is a more relaxed consistency model
than, e.g., sequential (atomic) consistency, it allows us to ensure
a key property: the programmer can rely on the control-flow of
the CSM to be observed consistently throughout the network—
switches may be out-of-sync in their views of the CSM’s “program
counter”, but not in conflicting ways.

This consistency model allows for an efficient implementation—
the CSM executes entirely in the data plane, without involvement
of an SDN controller (except possibly to initialize registers on

switches upon network startup). The key practical advantage of
our new CSM approach versus our previous relaxed-consistency
approach [51] is that CSMs allow programming with loops, en-
abling applications such as load balancers.

2 MOTIVATION: COMPOSING LOAD
BALANCERWITH STATEFUL FIREWALL

Before detailing our approach, we will first give a high-level over-
view of data-plane programming, and some of the challenges that
it brings. Let us consider the example network shown in Figure 1,
where H2 is a server in a data center, and H1 is a client requesting
data from the server. Initially, all client traffic is directed through
S1, which functions as a permanently-enabled firewall, but as the
load on the data-center increases, load-balancer Slb may redirect
some flows through Sfw. In this case, firewall functionality can also
be enabled at Sfw. The key things to notice about this example are
that (1) action must be taken in response to packet-related events
occurring in the data plane, and (2) there are two different “pro-
cesses” making changes to the state of the network (firewall and
load balancer). The former means that it can become highly ineffi-
cient to involve the controller in handling these events. For exam-
ple, Slb would not be able to feasibly ask the controller to make a
load-balancing decision on each incoming packet.The latter means
that we need to think carefully about how these processes inter-
act, since the processes are simultaneously changing global state
in the network—in particular, the end-to-end forwarding behavior
is being modified by both processes. These processes are shown
graphically in Figure 2.

When compiling high-level stateful functionality into executable
code, subtle problems can occur. For example, in Figure 2, if the
load balancer goes up before the firewall is enabled, an important
security policy will be violated. To avoid this fault, the program
will need some type of synchronization between the two processes

H1

H2

Slb

S2

S1 Sfw

Figure 1: Example topology.

firewall
Sfw down

firewall
Sfw up

load-bal.
Slb off

load-bal.
Slb on

Figure 2: Example processes.

Correct-by-Construction Network Programming
for Stateful Data-Planes SOSR ’21, September 20–21, 2021, Virtual Event, USA

a b

•

c d

•

e f

• •1 3

2

4

5

6

7

8

9

g

• 10

a · b c + d e || f g*

(a) (b) (c) (d)

Figure 3: Composition operators and Petri nets: (a) sequenc-
ing, (b) choice, (c) concurrent composition, (d) iteration.

in order to prevent the policy violation—i.e., we need language sup-
port for writing such programs. More specifically, we need a lan-
guage (and compiler) that offers the following guarantees to net-
work programmers:

• Ability to read/write global network state such that basic
consistency is maintained at all times, i.e., devices should
not have incompatible views of state;

• Avoidance of packet buffering and other expensive synchro-
nization operations that reduce throughput;

• Composability of programs, i.e., we should be able to run the
firewall and load balancer at the same time; and

• Ways of ensuring that programs do not interact incorrectly
(e.g., enforcing the security policy in Fig. 1-2).

Our new programming abstraction CSMs provides these guar-
antees while still allowing intuitive specification of network behav-
ior, similar to the state machine shown in Figure 2.

Petri Nets. The semantics of CSMs can be defined in a straight-
forward and compositional way using Petri nets, a well-known
state-machine-like concurrencymodel.While the programmer can
easily use CSMs without understanding Petri nets in detail, some
basic background in this area will assist in understanding the pre-
cise behavior of the language constructs.

A Petri net is a transition system where one or more tokens (de-
noted by black dots) can move between places (denoted by circles),
as dictated by transitions (denoted by squares). An assignment of
tokens to places (representing the “state” of the Petri net) is called a
marking. Directed edges indicate where tokens can move—an edge
can either connect a place to a transition (an input place of the tran-
sition), or a transition to a place (an output place of the transition).
A transition is enabled when a token is present at all of its input
places, and an enabled transition can fire by removing a token from
each input place, and adding a token to each output place. A trace is
a sequence of markings that results from firing enabled transitions.
Figure 3 shows four Petri nets—the places are 1-10, the transitions
are a-g, and a token is initially present at each of places 1, 4, 6, 8,
and 10.

Petri nets provide a flexible framework for concurrency. For ex-
ample, the Petri net in Figure 3(a) shows how sequencing can be
modeled—transition a is the only one that is enabled, so it must
fire first (moving the token to place 2), before transition b can fire.
Figure 3(b) shows how choice can be modeled—either c can fire
(moving the token to place 5), or d can fire, but not both. Figure
3(c) shows how concurrency can be modeled—transition e can fire

fw_dnfw_up lb_offlb_on

• •

(fw_up · fw_dn)* || (lb_on · lb_off)*

fw_up = fn(...) fw := 1

lb_on = fn(...) lb := 1

lb_off = fn(...) lb := 0

fw_dn = fn(...) fw := 0

Figure 4: Example processes: Callback State Machine.

(moving the token from place 6 to place 7), and f can fire indepen-
dently. Figure 3(d) shows how iteration (cyclic behavior) can be
modeled—transition g can fire an indefinitely many times.

Callback State Machines. In previous work, we introduced event
nets [49, 51], a Petri-net-based language for event-driven network
programming. In that language, each transition is labeled with an
event. An event can be any phenomenon occurring at a specific
location (specific port on a switch), but for simplicity, events are
restricted to packet arrivals. Event nets must be 1-safe, that is, no
place should contain more than one token at any point during the
program’s execution. This allows each place to be labeled with a
set of forwarding rules dictating how packets move through the
network, and the current configuration is taken as the union of all
rules on places containing a token. The configuration can change
only in ways allowed by the event net—when a transition fires, the
forwarding rules corresponding to its input places are “overwrit-
ten” by the forwarding rules corresponding to its output places.

Our work extends event nets—a CSM’s behavior is defined in
terms of a 1-safe Petri net where each transition is labeled with an
event and a callback, and places are unlabeled (instead of signify-
ing a set of static forwarding rules). When an event corresponding
to an enabled transition occurs, the state of the Petri net is updated,
and the callback is executed at the location of the event occurrence.
A callback is a function that receives information about a specific
occurrence of an event, and executes a piece of imperative code
that can read/write to arbitrary global variables, which are read-
able network-wide, and can be used by switches to make forward-
ing decisions, etc. This adds significant flexibility to event nets, in
which global state is limited to static network configurations.

Composition of CSMs. CSMs can be built from other CSMs us-
ing the composition operators shown in Figure 3. Figure 4 shows
the CSM (and underlying Petri net) for the previously-described
firewall/load-balancer example. For the purposes of this discussion,
the specifics of the events are not important, sowewill focus on the
callbacks.This example features two single-bit global variables that
determine end-to-end forwarding paths—switches read from these
global variables to determine forwarding behavior. The fw_up and
fw_down callbacksmodify the fw global variable, and the lb_on and
lb_off callbacks modify the lb global variable, as shown in Figure
4. If switch Slb finds that lb = 0, it forwards all inbound (client)
packets left (to S1), and otherwise, it forwards some inbound pack-
ets right (to Sfw). If switch Sfw finds that fw = 0, it forwards all
inbound packets to S2, and otherwise, it drops disallowed inbound
packets. A policy violation occurs if disallowed packets are allowed

SOSR ’21, September 20–21, 2021, Virtual Event, USA Jedidiah McClurg

fw_dn

2

fw_up

lb_off

3

lb_on6

7

• •1 4
•

•

5

8

(fw_up · lb_on)* || (lb_off · fw_dn)*

Figure 5: Condition var.

fw_dn

2

fw_up lb_off

3

lb_on

6

•

•

1

4

• 5

((fw_up + lb_off) · (fw_dn + lb_on))*

Figure 6: Mutex.

to reach the server H2. On the surface this looks similar to the sim-
ple state machine in Figure 2, but the CSMs actually add a surpris-
ing amount of power, especially in terms of compositionality.

Unlike prior work, we can perform correct composition of call-
back nets. Correct means that we can easily add synchronization
constructs, in order to ensure that processes do not interact in un-
wanted ways. For example, in Figure 5, we have added condition
variable synchronization constructs to the Figure 4 CSM, which
prevent it from violating the security policy. In particular, lb_on
cannot fire until fw_up has fired, and subsequently, fw_down can-
not fire until lb_off has fired. The programmer needs only to com-
bine the original Figure 4 CSM with the condition variable CSM
shown in Figure 5 using the concurrent composition operator | |.

An important property of this type of correct composition is
that the resulting CSM is still efficiently implementable. The syn-
chronization constructs in this context work via message-passing,
and do not require blocking.

Consistency of the Program Control Flow. The most basic type of
correctness that we expect from a data-plane network program is
consistency of the program’s control flow. That is, devices should
not have incompatible views of where the “program counter” is—
in terms of our Petri-net semantics for CSMs, this means that
switches must not have incompatible views of the Petri net’s trace.
In our model, this is ensured by a condition called locality.

This condition can be explained by way of example—in Figure
5, we saw one way of ensuring that the Figure 4 CSM does not vi-
olate the security policy, but let us look at different way we can
add synchronization to ensure correctness with respect to the pol-
icy. In Figure 6, we have added a mutex-like construct between
the two processes. This ensures that there is a mutually-exclusive
choice between firing fw_dn and lb_on, and also between fw_up
and lb_off. The key detail to notice about this example is that place
6 is an input for two different transitions—we say that these tran-
sitions fw_dn and lb_on are conflicting.

The locality condition requires events associated with conflict-
ing transitions such as fw_dn and lb_on to be detected at the same
device. If this were not the case, and two such events were detected
simultaneously on two different devices, there would need to be ei-
ther consensus on the ordering (expensive), or acceptance of con-
flicting program state (incorrect program execution). Returning to
the Figure 6 example, let us assume that the events associated with

fw_dn and lb_on are detected at Sfw and Slb respectively. If these
two events occur (nearly) simultaneously, and both Slb and Sfw see
a token at place 6, they can fire lb_on and fw_dn respectively, re-
sulting in an inconsistent program state—Slb believes there to be a
token at place 3, and Sfw believes there to be a token at place 1, but
there is no execution of the Petri net where these two traces could
be reconciled.

If the programmer has written a CSM that fails to satisfy the lo-
cality condition, we can report an error message pointing to the
problematic conflicting transitions. Otherwise, the state of the im-
plemented program will be consistent—switches may have differ-
ing views of the Petri net trace, but these traces will be compatible.

Comparison to SNAP. It is now instructive to see how consisten-
cy/conflict resolution is handled in prior work. In the SNAP [4]
approach, each global variable (such as fw and lb) is stored on
a single device. The programmer does not need to be concerned
which device—the compiler picks the appropriate one. Consistency
is maintained in the following way: if certain packets must be pro-
cessed differently depending on the value of a specific state vari-
able, those packets are (automatically) directed through the appro-
priate device which contains that variable. This has several draw-
backs: (1) It is not tolerant of failures—if a switch containing a
certain variable goes down, the program will not be able to exe-
cute correctly; and (2) it can cause poor performance, e.g., conges-
tion when packets need to access the same variable. Thus conflict-
resolution is done at the expense of concurrency.

Our approach, on the other hand, does not need to “place” state
variables. Reads/writes to state happen locally, and state is lazily
distributed to other nodes in a way that maintains consistency. In-
stead of requiring each state variable to be contained at a single
node, state is replicated across all devices, making the systemmore
resistant to node failures.The only constraint we need is to require
conflicting events (as in the Figure 6 load balancer example) to be
detected at the same switch.

Consistency of Global Variables. As mentioned in Section 1, our
implementation of global variables ensures a form of causal con-
sistency. Global variables are built from conflict-free replicated
datatype (CRDT) [66] registers, and updates to these are propa-
gated lazily by piggybacking on data packets. In this way, causality
is maintained, i.e., devices that have received a data packet which
passed through a switch with a newer view of the global state will
incorporate this new view of the state into their own. Returning
to the firewall/load-balancer example in Figure 4, firing the fw_up
transition at Sfw updates the fw global variable, and causes that
switch to immediately begin dropping disallowed packets. How-
ever, the update to global variable fw is propagated lazily, mean-
ing S2 will not learn about this new value until it receives a packet
from Sfw. Similarly, Slb will learn about the new value only when
the server sends a response that passes through Sfw. Once Slb learns
that fw = 1, it may make sense to proactively drop disallowed
packets destined to Sfw—although there is a delay between the time
that the global variable changes, and the time that Slb learns about
this change, it does not affect correctness with respect to the se-
curity policy. This relaxed form of consistency is efficiently imple-
mentable, and the CRDTs ensure that switches have compatible
views of the values of global variables.

Correct-by-Construction Network Programming
for Stateful Data-Planes SOSR ’21, September 20–21, 2021, Virtual Event, USA

Automatic Synthesis of Synchronization. Additionally, ourmodel
enables tools [49] to automatically compose programs in ways
that respect certain high-level correctness properties. That is, our
model makes it possible to automatically insert code which pre-
vents various types of unwanted races when multiple programs
are deployed simultaneously.

3 CALLBACK STATE MACHINES
In this section, we will formalize our new high-level network pro-
gramming language. Since the language is implemented using a
new intermediate representation, we will begin with a discussion
of the IR.

3.1 TAPIR: Stateful Dataplane Intermediate
Representation

TAPIR is a new IR designed to simplify programming of per-switch
data-plane behavior. While languages like P4 can be used for this
purpose, we show how they are tied to networking hardware ar-
chitectures in ways that make them sub-optimal for the types of
source-to-source translation stages we need.

Pipelined Stateful Data-Planes. The P4 switch programming lan-
guage supports registers, which can be read/written using values
computed from the headers of incoming packets. P4 is a “schema”-
like language, which allows a sequence of tables to be (condi-
tionally) applied to the packet, and the tables must be separately
populated with forwarding rules to achieve the desired behavior.
Switches that target P4 are able to achieve line rate by using a
pipelined architecture which executes the P4 program. At a high
level, the switch is structured as an ingress pipeline, followed by
a queueing mechanism, followed by an egress pipeline. Each ar-
riving packet is processed by the ingress pipeline (with special
packet metadata fields set to indicate which port the packet ar-
rived on), and the P4 program can set metadata fields which tell
the subsequent queueing mechanism which output port(s) to send
the packet to. The queueing mechanism duplicates the packet if
needed, and sends each copy through the egress pipeline, where
the P4 program can make additional modifications to the packet
(except to the output port, which is now fixed).

Need for a New IR. Describing code transformations in terms
of this schema-like language is difficult. Our first goal is to make
the dataplane programming process more accessible for compiler
developers, by moving away from a flow-table-based model to-
wards a more familiar imperative programming language. Our
new intermediate representation TAPIR is a simple imperative pro-
gramming language used in our compiler. Conceptually, the lan-
guage is similar to P4, in that it provides a way of describing ba-
sic packet-processing functionality—specifically, functions which
accept a packet, optionally perform some modifications and/or up-
date local switch registers, and then send the packet to another
port(s) on the switch. Our IR is different in that it provides a con-
cise and straightforwardway of encoding both the control flow and
match-action table contents.

IR Syntax and Semantics. The full syntax of the IR is shown in
Figure 7—the syntax is similar to (a subset of) Rust. In IR programs,
the base data are true and false (of type bool), and fixed-width

id ∈ Ident (identifier)
n ∈ Z (numeric constant)
τ ::= bool | intn | (τ , . . .) | [τ ; n] | {id : τ , . . .} (type)

| τ → τ

tid ::= id | id : τ (typed ident.)
b ::= true | false (boolean)
e ::= b | n | id | id(e, . . .) | [e, . . .] | e[e] | (e, . . .) (expression)

| {id : e, . . .} | e.e | e+ e | e − e | e ∗ e | −e | {s; . . .}
| if(c) e else e | e as τ | id::id(e, . . .)

c ::= b | e , e | e = e | e > e | e < e | ¬c | c ∧ c (condition)
| c ∨ c

s ::= e | skip | let tid = e | let mut tid = e (statement)
| e = e | push_output(id, e, n, id) | for(id in n .. n) s

f ::= fn id(tid, . . .) s (function)

Figure 7: TAPIR intermediate representation syntax.

integers of a certain size (e.g., int32, int64, etc.). Data can be
structured into tuples such as (false, 1, 2, . . .), fixed-length arrays
such as [1, 2, . . .], and records such as {field1:100, field2:200}.

Variables can be created using let bindings, and later destruc-
tively modified using assignment (when created as mutable using
let mut). There is a for loop, where we require that the loop
bounds evaluate to constants at compile time (for compatibility
with the bounded programming model provided by P4 and other
hardware switches). There is also an if statement (standard else
if syntax is also supported, but is omitted for conciseness). Note
that the IR is an expression-based language, and “return values”
are simply the last expression in a block. For example, the code

let a = {
let x = 1; let y = 2; x + y

}

sets the value of a to 1 + 2 = 3.
A packet is modeled as a record, e.g.,

{ip_proto:int8, ip_dst:int32, . . . , data: . . .}

where ip_proto etc. are the standard header fields (TCP/IP, etc.),
and the data field(s) can hold a custom payload of custom type.
These fields are stored in the packet, and are readable/writable at
switches. Similarly, a switch is modeled as having a record type,
and in this case, the fields represent stateful registers on the switch,
which can be read/written when packets arrive. Custom packet
headers can also contain bounded stack data structures, which pro-
vide push and pop operations, but we elide discussion of this, and
instead use only arrays for clarity of the presentation.

Typechecking IR Programs. Before attempting to translate an IR
program to P4, we perform type checking—this is useful for pre-
venting tricky bugs due to unexpected bit-width conversions, etc.
The IR is strongly-typed, and has boolean, fixed-width integer, tu-
ple, fixed-length array, record, and function types. Although not
shown in the syntax, the programmer can specify a custom type
for the data field of packets, which we refer to as τpk, as well as a
custom type for switches, τsw. Values can be affixed with a type an-
notation, such as let x = 123 as int48. The integer types can
be signed or unsigned, and the width can be an expression, as long

SOSR ’21, September 20–21, 2021, Virtual Event, USA Jedidiah McClurg

as it evaluates to a constant integer at compile time, e.g., let n =
63; let y = 124 as int(n+1), which gives y type int64.

The typechecking functionality first performs constant propaga-
tion, eliminating constant let bindings, and replacing the name
with the corresponding value. A simple bottom-up typechecking
algorithm is then employed to confirm that all type annotations
are correct. By default, integer constants are taken to be signed
64-bit integers. Explicit type conversions can be performed be-
tween integer types, e.g., let x = 123 as int32; let b = x
as int64. The compiler makes sure that the proper code is emit-
ted to handle this conversion cleanly (sign extension, etc.). Type an-
notations are required on function parameters, but the function’s
return type can be inferred.

Global Variables. We define a global variable as a Conflict-free
Replicated Data Type (CRDT) register. We allow global variables
to be read/written via the id::id(e, . . .) form of expression in the
Figure 7 IR grammar. This can be used for CRDT operations such
as reg::write(...), reg::read(...), etc., where reg has been
declared as a CRDT register.

Callbacks. We define a callback to be an IR function which
takes the event-triggering packet and location as parameters, and
performs an action(s) such as reading/writing to global variables.
Specifically, a callback is an IR function with the following type:

(τpk,τsw, int32, int9, int8, bool) → τpk,

where the parameters are (1) a record representing the input packet,
(2) a record representing the switch where the packet arrived, (3)
the ID of the switch, (4) the ID of the input port, (5) the clone ID
(which will be discussed later), and (6) a boolean flag indicating
whether the packet has arrived directly from (or should be for-
warded directly to) an end host.This function can read/write to the
current switch, and return a modified version of the input packet.

Callbacks will be used in CSMs to perform updates to global
state, but they are also used to specify the forwarding behavior of
switches. Each switch has an ingress callback and an egress call-
back that process each packet after it arrives at an input port, and
before it is emitted from an output port respectively. Ingress/egress
callbacks may read from local/global state, but may only write to
local state—global writes must be handled via a CSM, to ensure
correct and efficient management of global state.

Mechanisms for Multicast. The function type for callbacks al-
lows a single output packet, but there are some network applica-
tions that requiremulticast, i.e., multiple output packets being pro-
duced. This is enabled in our IR by multiple calls to

push_output(pk, port_id, unique_flag, ca)

in the ingress callback, each of which indicates that a copy of the
input packet should be emitted to the output port port_id. The
unique_flag parameter is passed through as the clone_id pa-
rameter to the egress callback ca when it is called on the packet,
allowing multiple copies of the same packet to be distinguished, if
needed. We configure P4’s queueing mechanism to send each copy
of the packet to the indicated output port, where it is processed by
the indicated egress callback and transmitted from the switch.

l ::= (n, n) (location)
e ::= (c, l) (event)
m ::= (e, ca) | m ·m | m+m | m∥m | m∗ (CSM)

Figure 8: CSM language syntax.

Initialization and Topology Specification. The IR programmer can
define a packet initialization function

init_packet(pk, sw, sw_id, input_port),

which is called on each packet entering the network from a host—
this allows header fields to be set to default values. There is also
an initialization function for switches init_switch(sw, sw_id),
which is called once per switch, and is used to initialize switch reg-
isters to desired values. Unless initialized, all custom header fields
and all registers are zeroed.

Finally, for the purposes of experimentation and rapid prototyp-
ing, the programmer can also specify the desired network topology
(not shown in the IR). Our prototype implementation generates a
custom Mininet harness which implements it (details in Section 5).

3.2 Callback State Machines
Leveraging our IR, we develop a high-level declarative language
for stateful data-plane programming, and show how its behavior
can be described in terms of Petri nets. In Section 2, we described
CSMs at a high level, and now we formalize the definitions.

Callback State Machines. The syntax of the language describing
CSMs is shown in Figure 8. We define a location to be a switch-port
pair (sw,pt), and an event to be a pair (c, l), where l is a location
and c is a condition (see Figure 7). In practice, the condition can
refer to packet headers, registers on the switch, etc., but for con-
ciseness, we will require c = true, so that we can identify an
event simply by its location (signifying arrival of some packet at
that location). Finally, we define a CSM to be either an event paired
with a callback, or composite CSMs built with the shown composi-
tion operators. We next formalize the definition of Petri nets, and
define the semantics of CSMs using 1-safe Petri nets, where each
transition is associated with an event and a callback.

Petri Nets. We define a Petri net N = (T , P ,D,M0) to be a tuple
whereT is a set of transitions, P is a set of places, andD ⊆ (T ×P)∪
(P × T) is a set of directed edges connecting transitions to places
or vice-versa. Input places of a transition are defined as ins(t) =
{p | (p, t) ∈ D}, and output places are outs(t) = {p | (t ,p) ∈ D}.
A marking M : T → N is a map that assigns a number of tokens
to each place (M0 is the initial marking). A transition t ∈ T is
enabled by a marking if M(p) > 0 for all p ∈ ins(t). A marking M

can update to a new marking M ′ by firing an enabled transition,
denoted M

t
−→ M ′, and the updated marking is

M ′(p) =

M(p) − 1 if p ∈ ins(t) − outs(t)
M(p) + 1 if p ∈ outs(t) − ins(t)
M(p) otherwise.

A trace is a sequence of markings M0M1 · · ·Mn such that for all
0 ≤ j < n, there exists some tj ∈ T such thatMj

tj
−→ Mj+1. A Petri

Correct-by-Construction Network Programming
for Stateful Data-Planes SOSR ’21, September 20–21, 2021, Virtual Event, USA

•

•

[[m1]]

•

(e,ca)•

[[m2]]

•

[[m1]]

•

[[m2]]

•

[[m1]]

•

[[(e,ca)]]

[[m1 · m2]]

[[m1 + m2]]

[[m1 || m2]]

[[m*]]

[[m1]]

•

[[m2]]

•

Figure 9: CSM semantics, using 1-safe Petri nets.

(e1,ca1)•
(e3,ca3)

(e2,ca2)

Figure 10: Semantics for ⟦(e1, ca1)·((e2, ca2)∥(e3, ca3))⟧.

net is 1-safe if for all traces, every markingM within the trace has
M(p) ≤ 1 for all p.

CSM Semantics. CSM semantics is defined graphically in Figure
8. The output of the function ⟦·⟧ is a 1-safe Petri net, where each
transition is labeled with an event and a callback, and one or more
places is marked as “final” (denoted by a thick border). Note that
the composition operators ensure 1-safety of the resulting Petri
nets. The function ⟦·⟧ is defined recursively, using an operation
that merges pairs of places. This merge operation is shown visu-
ally using the large black places–red/blue places inside these are
deleted by the merge operation. The input/output places for the
(e, ca) form of transition are dashed to indicate that one or more
input/output places will be generated as needed, with respect to
the sequencing operator. For example, in Figure 10, two output
places have been generated for the (e1, ca1) transition, to match
up with the two initial places generated for the parallel composi-
tion (e2, ca2)∥(e3, ca3).

When producing a Petri net from aCSM,we perform two checks:
(1) that the locality condition (Section 2) has been satisfied, and (2)
that each merge operation not involving dashed places involves ex-
actly two places.The latter disallows the programmer fromwriting
(A∥B)·(C∥D), requiring instead (A∥B)·(e, ca)·(C∥D) where (e, ca)
serves to generate a barrier ensuring that both A and B have fully
executed before continuing. While we could automatically insert
“dummy” transitions in the Petri net to produce the same effect,
we would then need to choose proper locations for each of these,
necessitating a constraint solver.

4 CSM COMPILER
In this section, we detail the steps involved in transforming a CSM
into executable code that can be run onmodern switches. Note that
although we target P4 switches, our techniques also apply to other
platforms, and other compiler backends could be added easily.

Compilation Stages. The compiler performs the following trans-
formations, which are described in the subsequent sections:

• L3: CSM (callbacks that read/write global state)
↓

• L2: (per-switch) IR programs with global variables
↓

• L1: IR programs that read/write only local state
↓

• P4 programs that read/write only local state

4.1 Compilation: L3 → L2.
Thefirst stage of the compilation translates CSMs into IR programs
with global registers. The Petri net obtained from the CSM can be
encoded along with the topology declaration:

let topology = [
// ... declare topology ...
// declare CSM:
event([1,2,3], S1:2, [4,5], callback, 123),
marking([1,2,3])

]

In this example, the places 1, 2, 3 are initially marked, and a packet
arrival at location (S1, 2) allows the transition to fire, moving the
tokens to places 4, 5, and calling callback with the clone_id
parameter set to 123. This unique ID can be used to distinguish
multiple events using the same callback.

We translate the Petri net into global registers as follows. For
each place, we generate a single-bit global register. We generate a
custom init_switch function to initialize these globals to match
the specified initial marking. At the beginning of each ingress call-
back, we read the globals and check the current marking. We then
insert a sequence of if statements to check whether the current
marking and current switch and portmatch a transition in the Petri
net. Within the body of each of these, we first insert the statements
of the corresponding callback, and then insert code to update the
globals to match the new marking.

4.2 Compilation: L2 → L1.
The second compilation stage translates IR programs with global
registers into IR programswith only local registers accesses. Global
registers are declared along with the topology declaration. Cur-
rently, we support two types of CRDT global registers: Increment
(unsigned) and Last-writer wins (LWW) (signed). Bit-width of the
registers can be specified.

let topology = [
// ... declare topology ...
// declare globals:
global("counter", 32, "inc"),
global("test", 64, "lww")

]

These global registers are accessed in the following way:
// read the counter
let x = counter::read(swt, swt_id);
// increment the counter by 2

SOSR ’21, September 20–21, 2021, Virtual Event, USA Jedidiah McClurg

counter::inc(swt, swt_id, 2 uint32);

// read the LWW register
let y = test::read(swt, swt_id);
// write 123 to the LWW register
test::write(swt, swt_id, 123 int64)

In general, CRDT registers rely on causal ordering, so for this,
we use Lamport timestamps [41]. We add a new custom header
field time to packets, and a new register time to each switch. For
each global, we store a data structure in the packet header fields,
and in registers on each switch. The type of this data structure
differs for each type of CRDT register. For example, an increment
register is stored as an array of (per-switch) counters, and an LWW
register is stored as a register value along with a timestamp [66].

At the beginning of each ingress callback, we insert the follow-
ing code, wheremerдe is IR code for the state-based merge for that
CRDT type, andmax computes the maximum:

// update the local timestamp
swt.time = max(swt.time, pkt.time) + 1;
// update local copy of globals
swt.count = merдe(swt.count, pkt.count);
swt.test = merдe(swt.test, pkt.test)

At the end of each egress callback, we insert the following:
// send out local timestamp
swt.time = swt.time + 1;
pkt.time = swt.time;
// send out local copy of globals
pkt.count = merдe(swt.count, pkt.count);
pkt.test = merдe(swt.test, pkt.test)

At this point, we have IR code with only local reads/writes, so
we can now proceed to emitting P4 code.

4.3 Compilation: L1 → P4.
The final stage of the compiler produces P4 code from an IR pro-
gram. We support P4_14, to provide backward-compatibility with
older P4 installations. P4_14 does not have the expression-level if
construct, let bindings, or data structures like arrays and tuples.
Thus, we first perform several transformations on the code to sim-
plify it before P4 code generation.

First, we flatten all expression-level blocks into statement-level
blocks. This is shown in Figure 11. In particular, we first eliminate
blocks appearing in a let binding, by pulling out all statements,
and then let-binding the final expression (Figure 11(a)). We then
eliminate if expressions appearing in a let binding, by introduc-
ing a temporary mutable variable, and assigning the final expres-
sion in each branch to this variable (Figure 11(b)). Finally, we pull
reads/writes of switch fields out of expressions, so that they ap-
pear at the statement level (Figure 11(c)). This is because P4 only
has statement-level read/write functionality for registers. After ap-
plying these transformations, the control-flow in the resulting IR
code is implementable using P4’s if blocks, and statements like
register_write etc.

In order to translate IR data structures into flat integer types
which can be handled by P4, we need to perform the transforma-
tions shown in Figure 12. For example, we recursively flatten ar-
rays into lists of flat integers (Figure 12(a)). Similarly, we (recur-
sively) flatten records in a similar way (Figure 12(b)), and tuples
follow a similar pattern.

(a)

let a = {
let x = 1;
let y = 2;
x + y

}

let x = 1;
let y = 2;
let a = x + y

(b)

let b = if(a > 1) {
123

} else {
124

}

let umut t = 0;
if(a > 1) {

t = 123
} else {

t = 124
}

(c)

let c =
swt.one + swt.two;

let d =
pkt.one + pkt.two

let t1 = swt.one;
let t2 = swt.two;
let c =

t1 + t2;
let d =

pkt.one + pkt.two

Figure 11: Step 1: Flattening IR statements

(a)

let a =
[[1,2],
[3,4],
[5,6]]

let a_0_0 = 1;
let a_0_1 = 2;
let a_1_0 = 3;
let a_1_1 = 4;
let a_2_0 = 5;
let a_2_1 = 6

(b)
let b =

{foo:123,
bar:true,
baz:[1,2]}

let b_foo = 123;
let b_bar = true;
let b_baz_0 = 1;
let b_baz_1 = 2

Figure 12: Step 2: Flattening IR assignments/datatypes

pkt.one = 1;
let mut two = 2;
pkt.one =

pkt.one + two;

pkt.one = 1;
pkt.meta.two = 2;
pkt.one =

pkt.one +
pkt.meta.two

Figure 13: Step 3: Flattening IR variables

The last step of the translation before emitting P4 code involves
eliminating let bindings, as shown in Figure 13. Since P4_14 does
not have support for such a construct, we translate all let bindings
into packet metadata-field writes.These metadata fields essentially
function as “temporary variables” stored in the packet during pro-
cessing on the switch. They are separate from the packet’s custom
header fields, and are not transmitted with the packet.

After the Figure 11-13 transformations are performed, the body
of each callback function only contains if statements, and straight-
line code containing only reads/writes to packet or switch fields.
Each field is of a flat integer type. This maps readily into P4 code:
the if blocks can be emitted directly, and each executable state-
ment (field read/write) can be emitted as a call to apply(table),
where table is an empty P4 table whose default action is the
executable statement. For example, writes to switch fields such
as swt.field=e become register_write(field,0,e), reads
from switch fields such as pkt.meta.field=swt.field become
register_read(routing_metadata.field,field,0), and ac-
cesses to custom packet fields such as pkt.one become data.one,

Correct-by-Construction Network Programming
for Stateful Data-Planes SOSR ’21, September 20–21, 2021, Virtual Event, USA

0.00 10.00 20.00 30.00

S2

S1

S_fw

S_lb

Time (s)

Figure 14: Property violation:malicious packets reach server
(Figure 4 example).

where data is a custom P4 header holding all the (now flat inte-
ger) custom fields. The IR push_output function is implemented
by conceptually “pushing” the desired output port, egress callback,
and unique ID to a bounded “stack” in packet metadata fields.

A P4 parser is built for the data header. The ingress block
of the P4 program (entrypoint which processes packets from the
ingress queue) first checks whether an incoming packet contains
this custom header—for simplicity, we indicate this with a special
flag in the PCP bits of a VLAN header. If the packet is not flagged,
we add the custom header (and the VLAN header, if necessary).
We apply tables which set the sw_id, input_port, and is_edge
callback parameters, and then emit the P4 code for the callback’s
body as described above.

Handling push_output. We use themulticast groups supported
bymany P4 switches to ensure that the packet is sent to each of the
ports contained in the output-port stack. At the end of the ingress
block, we apply tables which match on the contents of the output-
port stack, and set the intrinsic_metadata.mcast_grp field
accordingly. We map a unique multicast group ID to each poten-
tial combination of port IDs in the stack. The number of multicast
groups is kept low by limiting the size of the stack (multicasting
many packets is not common in our applications).

The egress block of the P4 program processes each packet
after the ingress pipeline has moved it to a specific output port
queue (as dictated by the multicast group). We have set up our
multicast group assignments such that the multicast mechanism
sets intrinsic_metadata.egress_rid to correspond to the index
of this packet in the output-port stack.Thus, we apply tables which
set metadata fields clone_id and callback to the unique ID and
specified egress callback used in the push_output call. We then
emit an if block for each possible egress callback in the IR pro-
gram, and match on the callback ID to determine which one
should handle the packet. Finally, the egress queue ends with ta-
bles which strip the VLAN and custom data header when the
packet is transmitted directly to a host.

5 IMPLEMENTATION & EVALUATION
We have fully implemented the system described in Sections 3-4.
The compiler consists of 3500+ lines of OCaml code, and the utili-
ties for setting up and running experiments consist of about 1200+
lines of Java code. We ran all experiments on an Ubuntu Linux ma-
chine with 20GB RAM and a 3.2 GHz 4-core Intel i5-4570 CPU.

0 10 20 30

S2

S1

S_fw

S_lb

Time (s)

Figure 15: Correct operation:malicious packets blocked (Fig-
ure 5-6 examples).

The main research questions we ask in this section are
(1) Do applications built using our approach function correctly

and efficiently?
(2) Is it straightforward to use our approach to write real-world

dataplane applications?
To answer Question #1, we implemented the CSM examples

shown in Figures 4-6, on the topology shown in Figure 1. Our re-
sults are shown in Figures 15-14. In these graphs, each point repre-
sents a packet received at a given switch, at the time indicated by
the point’s position relative to the horizontal axis. Larger points
correspond to state-change events. After each state change event,
we attempted to send 5 malicious packets from client H1 to server
H2. In Figure 14, the Slb state change event at time 0 causes the load
balancer to send packets to the firewall, allowing malicious pack-
ets to be received at S2 until the firewall state change event occurs,
at time 5 (policy violation). In Figure 15, the Slb state change event
at time 0 is ignored, since the corresponding CSM requires that the
firewall state must change first. The firewall is enabled at time 10,
and at time 20, a second Slb state change event is received, and
now the CSM allows the load balancer to be enabled. Note that at
no time in Figure 15 does a malicious packet reach S2.

We answered Question #2 by using our IR to build a working
implementation of the CONGA adaptive congestion control sys-
tem [1]. While that paper’s approach required developing a cus-
tom ASIC, our approach only required the developer to write a
small amount of code in a high-level imperative language.

Network Setup. The topology used throughout this experiments
is shown in Figure 16. It corresponds to a simplified version of
a leaf-spine architecture, where switches S1, S2, S3 are the spine,
and S4, S5, S6 are leaves. The key thing to notice about this type
of topology is that there are several paths between each group of
hosts, allowing for traffic to circumvent congested paths.

Figure 16: CONGA topology.

SOSR ’21, September 20–21, 2021, Virtual Event, USA Jedidiah McClurg

We used the Mininet network emulator [15] to set up the net-
work and run experiments using a software switch that imple-
ments P4’s behavioral model. These are at a severe performance
disadvantage to hardware switches such as Barefoot Tofino, which
can execute code at line rate, but this setup allows us to easily ex-
periment with different topologies etc. We modified the simple-
switch Mininet interface to enable the simulation to automatically
install forwarding tables and initialize registers on the switches.
Our compiler emits a special Mininet startup script which builds
a topology to match the one specified in the IR program, and then
brings up the simple-switches, and sets their initial forwarding ta-
bles and register contents, as required by the program.

CONGA IR Implementation. We implementedCONGAusing our
IR language. In this section we will walk step by step through the
CONGA approach, and simultaneously see how this can be written
using our language.

First, we start outwith the topology shown in Figure 16. CONGA
requires this type of leaf-spine topology—the basic idea is that the
leaf switches choose which outgoing port to send each flow, based
on congestion experienced previously by packets along those up-
links. Appendix A.1 contains the IR code encoding the topology.

We now specify the data structures used in our approach. CONGA
requires packets to be tagged with several special fields. Specifi-
cally, lbtag tracks which port a leaf switch used to forward the
packet, and ce keeps track of the maximum congestion the packet
experiences in the network. This congestion information is lazily
propagated back to the sender, by piggybacking it on data packets,
using the corresponding fb_lbtag and fb_metric tags.

struct Packet {
lbtag:uint9,
ce:uint32,
fb_lbtag:uint9,
fb_metric:uint32

}

Leaf switches need to maintain several registers. The
flowlets register contains one entry for each host (in this case,
there are 9).This is used to keep track of flows being sent to the vari-
ous destination hosts. Periodically, the age bit is checked, and if set,
the flow expires (arriving packets reset the age bit). If the valid bit
is set, then the port records where packets in the flow are currently
being forwarded.The to_table register records a per-port conges-
tion metric for each switch, representing the extent of congestion
on the various uplinks. The from_table register records a per-
port congestion metric to send back to each switch—the “pointer”
bit records which of the metrics should be send next, when piggy-
backing on a data packet. All of these data structures need to be
initialized properly on every switch, which is specified by defining
an init_switch function (IR code shown in Appendix A.2).

struct Switch {
// (port,valid,age)
flowlets:[(uint9,bool,bool);9],
to_table:[[uint32;7];9],
// ("pointer",metric)
from_table:[(uint9,[uint32;7]);9]

}

As discussed in Section 3, the ingress callback is used to process
packets arriving at the switch, and the is_edge parameter is used
to determine whether the packet is arriving directly from a host. In

1.
00

E
+
01

1.
00

E
+
02

1.
00

E
+
03

1.
00

E
+
04

1.
00

E
+
05

1.
00

E
+
06

1.
00

E
+
07

1.
00

E
+
08

1.
00

E
+
09

1.
00

E
+
10

0

0.2

0.4

0.6

0.8

1

1.2

Enterprise workload
(CONGA)
Fit Pareto CDF
Mininet workload

Flow size (bytes)

Figure 17: CDF of flow sizes used in the experiments.

this case, this is useful for determining whether the switch should
behave as a leaf or spine. The IR code for the ingress callback is
shown in Appendix A.3.

As discussed in Section 3, the egress callback is used to process
each packet after it is processed by the ingress callback.The ingress
callback determines which port the packet should be forwarded to
(using the push_output function), and the egress callback does
any final processing before the packet is emitted from that port.
In this case, we check to see if the packet is exiting to a host (i.e.,
at a leaf switch), in which case we store the collected congestion
information.The egress callback IR code is shown in Appendix A.4.

Example Workload. To simulate a realistic workload, we first
mapped the “enterprise workload” cumulative distribution func-
tion (CDF) from the CONGA paper. We were able to fit this to a
Pareto distribution (Figure 17), but we found that the large flows
(> 10MB) take a very long time to complete in Mininet with the
simple-switches. Thus, we scaled the distribution as shown by the
dashed line in the figure.

We built a simple HTTP server which accepts and serves re-
quests for files of a certain size.We also build anHTTP clientwhich
connects to the server and sends requests at a fixed rate. The file
sizes requested by the client are sampled from the CDF shown in
Figure 17. For the experiment shown in Figure 18, we started a
server on every host in the Figure 16 network simulation. We also
started a client on each host, each of which made a connection to
all servers except the ones which share the same leaf switch.

In Figure 18, we increased the rate at which the clients are
making requests, and compared the average flow-completion time
(FCT) of our CONGA implementation versus our ECMP implemen-
tation. As seen in the CONGA paper, CONGA exhibits similar FCT
to that of ECMP on the enterprise workload—our graph roughly
matches Figure 9(a) in the CONGA paper.

6 DISCUSSION AND FUTURE WORK
While we believe that the CSM approach is an important step to-
ward simplifying correct and efficient data-plane programming,
there are several limitations we hope to overcome in future work.

• Our backend uses only default entries in P4 tables.This may
cause inefficiency, by producing many small tables instead
of a single table with multiple match-action rules. Addition-
ally, it makes functionality like least-prefix matching more
difficult to encode using the IR. We hope to address these

Correct-by-Construction Network Programming
for Stateful Data-Planes SOSR ’21, September 20–21, 2021, Virtual Event, USA

0200400600800100012001400160018002000

0

20

40

60

80

100

120

140

160

CONGA

ECMP

Delay between flows (ms)

F
lo

w
 c

o
m

p
le

tio
n

 ti
m

e
 (

m
s)

Figure 18: Performance of IR CONGA implementation.

issues via static analysis to automatically combine tables
when possible, and extending the IR with more powerful
pattern matching constructs.

• Our implementation of multicast must encode each possible
set of output ports, which can cause inefficiencywhen using
a large number of ports. Although we have not encountered
applications which necessitate extensive multicasting, we
hope to develop a more efficient multicasting mechanism.

• We are currently working to develop an algebra of CSMs, to
enable equational reasoning, e.g.,A·(B+C) = (A·B)+(A·C).
This is closely related to concurrent Kleene algebra [9].

7 RELATEDWORK
Correctness of Network Programs. Different notions of consis-

tency at the packet-level have been shown to be useful for rea-
soning about correctness of network behavior, and there are many
approaches for achieving/ensuring this [25, 30, 36–38, 43, 48, 50,
62, 80]. However, packet-level consistency is not always sufficient
[21]. Furthermore, in the stateful context, things become even
more complicated. We need to be able to describe and ensure cor-
rectness in an environment where events initiate changes in the
network [4, 17, 18, 24, 40, 49, 51, 56, 65, 74, 76, 77]. We also need to
be able to compose event-driven programs correctly [10, 61].

Consensus Routing [32] was designed to address the tension be-
tween consistency and availability in networks. This is also a chal-
lenge in datacenters, since it is important that the network have
both high throughput and high availability. One way to achieve
this is via stateless functionality [33]. Another approach is to allow
distributed state, but use relaxed consistency models [59], which
is the direction we take.

There has also beenwork on correctness at the hardware/switch
level, e.g., Packet Transactions in P4 [67]. P4 has been used to pro-
vide strong consistency [14]. Hyper4 enables correct composition
of multiple P4 programs [23].

Data-Plane Programming. Over the last few years, there has
been a trend towards pushing functionality which normally oc-
curred in the control-plane into the data-plane [64]. As we men-
tioned briefly in the Introduction, numerous examples of these
data-plane programs can be found across several application areas:

• AdaptiveCongestion control—the network automatically
adjusts forwarding decisions, based on levels of congestion,

in order to adapt readily to changing traffic patterns. These
include CONGA [1], HULA [34], DCTCP [2], Fastpass [60],
ExpressPass [13], Hermes [79], DRILL [22], and others.

• Traffic management—these optimize the performance of
the network along various quality metrics, such as consis-
tency [11], connectivity [44], deadlock prevention [27], ro-
bustness [72], I/O performance [71], etc.

• Monitoring—these perform measurements of properties
in the network, beyond what can be done with a simple
host-based monitor, and include Felix [12], Pivot Tracing
[47], OpenSketch [75], In-band Network Telemetry [39],
Hardware-software co-design [54], Heavy hitter detection
[68], SwitchPointer [70], Path Queries [55], and NetQRE
[78].

• Active networking—packets can carry small “programs”
which are executed by forwarding devices as the packet
moves through the network. Millions of Little Minions [28]
is a recent example, which is able to implement various data-
plane applications, such as load balancing, etc.

• NetworkOS/Runtimes—these provide virtualization func-
tionality built on top of networking devices, such as Partic-
ipatory Networking [19], E2 [57], etc.

In contrast to the huge variety of ways these individual data-
plane applications were developed, our work provides a general
approach for building such applications, and ensuring that they
operate correctly.

Concurrent Programming for Networks. Dudycz et al. [16] present
an algorithm to compose network updates correctly with respect
to loop freedom, and show that the problem of optimally doing
so is NP-hard. Li et al. [42] present an algebra-based approach
for reasoning about composition of updates. Beyond network up-
dates, there has been work on composing network programs. For
example, Pyretic has a programming language which allows se-
quential/parallel composition of static policies—dynamic behavior
can be obtained via a sequence of policies [52]. NetKAT is a math-
ematical formalism and compiler which also allows composition
of static policies [3, 69]. CoVisor is a hypervisor that allows mul-
tiple controllers to run concurrently (sequential or parallel com-
position). It can incrementally update the configuration based on
interceptedmessages from controllers, and does not need to recom-
pile the full composed policy [29]. The PGA system addresses the
issue of how to handle distributed conflicts, via customizable con-
straints between different portions of the policies, allowing them
to be composed correctly [61]. Bonatti et al. [7] present an algebra
for properly composing access-control policies. Canini et al. [10]
use an approach based on software transactional networking to
handle conflicts. We deal with conflicts through the locality condi-
tion of CSMs.

Handling persistent state properly in network programming is
a difficult problem. Although basic support is provided by switch-
level mechanisms for stateful behavior [6, 8, 67], global coordina-
tion still needs to be handled carefully at the language/compiler
level. FAST [53], OpenState [6], and Kinetic [40] provide a finite-
state-machine-based approach to stateful network programming.
Gao et al. [20] present Trident, an approach for integrating net-
work functions (NF) and SDN. Arashloo et al. [4] present SNAP,

SOSR ’21, September 20–21, 2021, Virtual Event, USA Jedidiah McClurg

a high-level language for writing network programs. SNAP has a
language with support for sequential/parallel composition of state-
ful policies, as well as built-in features beyond what we provide
(such as atomic blocks). However, none of these approaches exam-
ine how to avoid/handle (or analyze) distributed conflicts. McClurg
et al. [51] present an approach which formalizes event-driven net-
work programs using event structures, and show how to deal with
distributed conflicts. Our approach is conceptually similar, but pro-
vides a more flexible model, while retaining the ability to utilize
consistency properties presented there.

SNAP [4] is the language/compiler most closely-related to our
work. It combines NetKAT’s ability to describe static configura-
tions with the ability to read/write persistent state that can influ-
ence the processing of future packets. There are several key differ-
ences between our approach and SNAP:

(1) Network model — SNAP uses a “one big switch” model,
meaning the program simply moves packets between end
hosts. This model is essential for their approach, and it is
not possible to access the “internals” of the network. Our
model, on the other hand, allows a high-level program to be
written such that individual devices within the network can
be used (e.g., packets can be made to travel specific paths,
which is important in applications like congestion control).

(2) Execution model — A SNAP program essentially runs in a
“loop”, i.e., the packet-processing function is applied each
time a packet is sent into the network from an end host. Our
approach is callback-based, i.e., certain events (e.g., arrival of
certain packets at certain ports) cause corresponding blocks
of code to be executed.

(3) State placement / Conflict resolution — Since this is the key
difference, we discuss it in Section 2.

(4) Composability — Our tool makes it easy to compose pro-
grams. At the level of SNAP packet-processing functions,
it is not clear what the composition of two programs looks
like (this only becomes clear at the level of the compiled
program representation, xFDDs).

Network Repair and Network Update Synthesis. While this paper
focuses on correct-by-construction programming, there are other
approaches for ensuring correctness of network programs. Saha
et al. [63] and Hojjat et al. [24] present approaches for repairing a
buggy network configuration using SMT and a Horn-clause-based
synthesis algorithm respectively. Instead of repairing a static con-
figuration,McClurg et al. [49] repair a network program.Thatwork
presents a new language called event nets, and a synchronization
synthesis framework that helps users properly compose several
processes into a single correct network program.

A network update is a simple network program—a situation
where the global forwarding state must change. In the networking
community, there are several proposals for packet- and flow-level
consistency properties that should be preserved during an update.
For example, per-packet and per-flow consistency [48, 62], and
inter-flow consistency [45]. Many approaches solve the problem
with respect to different variants of these consistency properties
[25, 31, 35, 46, 50, 80]. In contrast, we provide a new language for
succinctly describing how multiple updates can be composed, and

this allows us to leverage approaches for synthesizing a composi-
tion which respects customizable properties over packet traces.

8 CONCLUSION
We proposed a network programming language CSM that allows
operators to write data-plane programs against global state.This is
enabled by a new intermediate representation TAPIR, and a com-
piler that produces efficient code for stateful switches. Our key in-
sight is that we can allow programming against global state and
allow programs with asynchronous control flow: CSM has a call-
back mechanism for specifying how networks react to events such
as a congestion or an attempted intrusion.

In the future, we plan to explore both the theoretical and the
practical directions enabled by this work, such as studying the for-
mal properties of CSM, and extending it to help with non-SDN
tasks such as bringing up servers on-demand.

ACKNOWLEDGMENTS
We are deeply grateful to Pavol Černý, Nate Foster, and Friedrich
Weber for their advice and assistance on an early version of this
work. We thank the anonymous reviewers for their constructive
comments, and our shepherd David Walker, for providing further
insight and direction. This work was funded by the National Sci-
ence Foundation under awards NSF CCF 1849622 and 1952816.

REFERENCES
[1] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Matus,
Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA: distributed
congestion-aware load balancing for datacenters. In SIGCOMM. ACM, 503–514.

[2] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sen-
gupta, andM. Sridharan. 2010. Data Center TCP (DCTCP). In SIGCOMM. 63–74.

[3] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptist Jeannin, Jean-
Baptiste, Dexter Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT:
Semantic Foundations for Networks. POPL (2014).

[4] Mina Tahmasbi Arashloo, Yaron Koral, Michael Greenberg, Jennifer Rexford,
and David Walker. 2016. SNAP: Stateful Network-Wide Abstractions for Packet
Processing. SIGCOMM (2016).

[5] Eric Badouel, Benoıt Caillaud, and Philippe Darondeau. 2002. Distributing Finite
Automata Through Petri Net Synthesis. Formal Asp. Comput. 13, 6 (2002), 447–
470.

[6] Giuseppe Bianchi, Marco Bonola, Antonio Capone, and Carmelo Cascone.
2014. OpenState: Programming Platform-independent Stateful Openflow Ap-
plications Inside the Switch. ACM SIGCOMM CCR (2014).

[7] Piero A. Bonatti, Sabrina De Capitani di Vimercati, and Pierangela Samarati.
2000. A modular approach to composing access control policies. In ACM Confer-
ence on Computer and Communications Security. ACM, 164–173.

[8] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rex-
ford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al. 2014.
P4: Programming Protocol-independent Packet Processors. ACM SIGCOMM
CCR (2014).

[9] Paul Brunet, Damien Pous, and Georg Struth. 2017. On Decidability of Concur-
rent Kleene Algebra. In CONCUR (LIPIcs, Vol. 85). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 28:1–28:15.

[10] Marco Canini, Petr Kuznetsov, Dan Levin, and Stefan Schmid. 2013. Soft-
ware transactional networking: concurrent and consistent policy composition.
In HotSDN. ACM, 1–6.

[11] Carmelo Cascone, Luca Pollini, Davide Sanvito, and Antonio Capone. 2015. Traf-
fic Management Applications for Stateful SDN Data Plane. In EWSDN. IEEE
Computer Society, 85–90.

[12] Haoxian Chen, Nate Foster, Jake Silverman, Michael Whittaker, Brandon Zhang,
and Rene Zhang. 2016. Felix: Implementing Traffic Measurement on End Hosts
Using Program Analysis. In SOSR. ACM, 14.

[13] Inho Cho, Keon Jang, and Dongsu Han. 2017. Credit-Scheduled Delay-Bounded
Congestion Control for Datacenters. In SIGCOMM. ACM, 239–252.

[14] Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé. 2016. Paxos
Made Switch-y. Computer Communication Review 46, 2 (2016), 18–24.

Correct-by-Construction Network Programming
for Stateful Data-Planes SOSR ’21, September 20–21, 2021, Virtual Event, USA

[15] R. L. S. de Oliveira, C. M. Schweitzer, A. A. Shinoda, and Ligia Rodrigues Prete.
2014. Using Mininet for emulation and prototyping Software-Defined Networks.
In 2014 IEEE Colombian Conference on Communications and Computing (COL-
COM). 1–6. https://doi.org/10.1109/ColComCon.2014.6860404

[16] Szymon Dudycz, Arne Ludwig, and Stefan Schmid. 2016. Can’t TouchThis: Con-
sistent Network Updates for Multiple Policies. In DSN. IEEE Computer Society,
133–143.

[17] Ahmed El-Hassany, Jeremie Miserez, Pavol Bielik, Laurent Vanbever, and Mar-
tin T. Vechev. 2016. SDNRacer: concurrency analysis for software-defined net-
works. In PLDI. ACM, 402–415.

[18] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin Vechev. 2018.
NetComplete: Practical Network-Wide Configuration Synthesis with Autocom-
pletion. In 15th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 18). USENIX Association, Renton, WA, 579–594. https://www.
usenix.org/conference/nsdi18/presentation/el-hassany

[19] Andrew D. Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca, and Shriram
Krishnamurthi. 2013. Participatory networking: an API for application control
of SDNs. In SIGCOMM. ACM, 327–338.

[20] Kai Gao, Taishi Nojima, and Yang Richard Yang. 2018. Trident: toward a uni-
fied SDN programming framework with automatic updates. In SIGCOMM. ACM,
386–401.

[21] Soudeh Ghorbani and Brighten Godfrey. 2014. Towards correct network virtu-
alization. In HotSDN. ACM, 109–114.

[22] Soudeh Ghorbani, Zibin Yang, Philip Brighten Godfrey, Yashar Ganjali, and
Amin Firoozshahian. 2017. DRILL: Micro Load Balancing for Low-latency Data
Center Networks. In SIGCOMM. ACM, 225–238.

[23] David Hancock and Jacobus E. van der Merwe. 2016. HyPer4: Using P4 to Vir-
tualize the Programmable Data Plane. In CoNEXT. ACM, 35–49.

[24] Hossein Hojjat, Philipp Ruemmer, Jedidiah McClurg, Pavol Cerny, and Nate Fos-
ter. 2016. Optimizing Horn Solvers for Network Repair. FMCAD (2016).

[25] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mo-
han Nanduri, and Roger Wattenhofer. 2013. Achieving High Utilization with
Software-driven WAN. HotNets (2013).

[26] Richard P. Hopkins. 1990. Distributable nets. In Applications and Theory of Petri
Nets (Lecture Notes in Computer Science, Vol. 524). Springer, 161–187.

[27] Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo, Kun Tan, Jitendra Padhye,
and Kai Chen. 2016. Deadlocks in Datacenter Networks: Why Do They Form,
and How to Avoid Them. In HotNets. ACM, 92–98.

[28] Vimalkumar Jeyakumar, Mohammad Alizadeh, Yilong Geng, Changhoon Kim,
and David Mazières. 2014. Millions of little minions: using packets for low la-
tency network programming and visibility. In SIGCOMM. ACM, 3–14.

[29] Xin Jin, Jennifer Gossels, Jennifer Rexford, and David Walker. 2015. CoVisor: A
Compositional Hypervisor for Software-Defined Networks. NSDI (2015).

[30] X. Jin, H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang, J. Rexford, and
R. Wattenhofer. 2014. Dynamic Scheduling of Network Updates. In SIGCOMM.
539–550.

[31] Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth Kandula, Ratul Mahajan,
Ming Zhang, Jennifer Rexford, and Roger Wattenhofer. 2014. Dynamic Schedul-
ing of Network Updates. SIGCOMM (2014).

[32] J. John, E. Katz-Bassett, A. Krishnamurthy, T. Anderson, and A. Venkataramani.
2008. Consensus Routing: The Internet as a Distributed System. NSDI (2008).

[33] Murad Kablan, Azzam Alsudais, Eric Keller, and Franck Le. 2017. Stateless Net-
work Functions: Breaking the Tight Coupling of State and Processing. In NSDI.
USENIX Association, 97–112.

[34] Naga Praveen Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and
Jennifer Rexford. 2016. HULA: Scalable Load Balancing Using Programmable
Data Planes. In SOSR. ACM, 10.

[35] Naga Praveen Katta, Jennifer Rexford, and David Walker. 2013. Incremental
Consistent Updates. In HotSDN. ACM, 49–54.

[36] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick McKe-
own, and ScottWhyte. 2013. Real Time Network Policy Checking Using Header
Space Analysis. In NSDI. 99–112.

[37] Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header Space
Analysis: Static Checking for Networks. In NSDI.

[38] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P Godfrey. 2012. Ver-
iFlow: Verifying Network-wide Invariants in Real Time. ACM SIGCOMM CCR
(2012).

[39] Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Advait Dixit,
and Lawrence J Wobker. 2015. In-band Network Telemetry via Programmable
Dataplanes. In SOSR (Demo paper).

[40] Hyojoon Kim, Joshua Reich, Arpit Gupta, Muhammad Shahbaz, Nick Feamster,
and Russ Clark. 2015. Kinetic: Verifiable Dynamic Network Control. NSDI
(2015).

[41] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed
System. Commun. ACM 21, 7 (July 1978), 558–565. https://doi.org/10.1145/
359545.359563

[42] Geng Li, Yang Richard Yang, Franck Le, Yeon-Sup Lim, and Junqi Wang. 2019.
Update Algebra: Toward Continuous, Non-Blocking Composition of Network

Updates in SDN. In INFOCOM. IEEE, 1081–1089.
[43] Hongqiang Harry Liu, Xin Wu, Ming Zhang, Lihua Yuan, Roger Wattenhofer,

and David Maltz. 2013. zUpdate: Updating Data Center Networks with Zero
Loss. In SIGCOMM. ACM, 411–422.

[44] Junda Liu, Aurojit Panda, Ankit Singla, Brighten Godfrey, Michael Schapira, and
Scott Shenker. 2013. Ensuring Connectivity via Data Plane Mechanisms. In Pre-
sented as part of the 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13). USENIX, Lombard, IL, 113–126. https://www.usenix.
org/conference/nsdi13/technical-sessions/presentation/liu_junda

[45] Weijie Liu, Rakesh B Bobba, Sibin Mohan, and Roy H Campbell. 2015. Inter-
Flow Consistency: Novel SDN Update Abstraction for Supporting Inter-Flow
Constraints. NDSS (2015).

[46] A. Ludwig, M. Rost, D. Foucard, and S. Schmid. 2014. Good Network Updates for
Bad Packets: Waypoint Enforcement Beyond Destination-Based Routing Poli-
cies. In HotNets.

[47] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. 2016. Pivot Tracing: Dy-
namic Causal Monitoring for Distributed Systems. In USENIX Annual Technical
Conference. USENIX Association.

[48] Ratul Mahajan and RogerWattenhofer. 2013. On Consistent Updates in Software
Defined Networks. In SIGCOMM.

[49] Jedidiah McClurg, Hossein Hojjat, and Pavol Cerny. 2017. Synchronization Syn-
thesis for Network Programs. CAV (2017).

[50] Jedidiah McClurg, Hossein Hojjat, Pavol Cerny, and Nate Foster. 2015. Efficient
Synthesis of Network Updates. PLDI (2015).

[51] Jedidiah McClurg, Hossein Hojjat, Nate Foster, and Pavol Cerny. 2016. Event-
driven Network Programming. PLDI (2016).

[52] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David
Walker. 2013. Composing Software Defined Networks. NSDI (2013).

[53] Masoud Moshref, Apoorv Bhargava, Adhip Gupta, Minlan Yu, and Ramesh
Govindan. 2014. Flow-level State Transition as a New Switch Primitive for SDN.
In HotSDN.

[54] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Mohammad Alizadeh,
David Walker, Jennifer Rexford, Vimalkumar Jeyakumar, and Changhoon Kim.
2016. Hardware-Software Co-Design for Network Performance Measurement.
In HotNets. ACM, 190–196.

[55] Srinivas Narayana, Mina Tahmasbi, Jennifer Rexford, and David Walker. 2016.
Compiling Path Queries. In NSDI. USENIX Association, 207–222.

[56] Tim Nelson, Andrew D Ferguson, MJ Scheer, and Shriram Krishnamurthi. 2014.
Tierless Programming and Reasoning for Software-Defined Networks. NSDI
(2014).

[57] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda, Sylvia Rat-
nasamy, Luigi Rizzo, and Scott Shenker. 2015. E2: a framework for NFV applica-
tions. In SOSP. ACM, 121–136.

[58] Aurojit Panda, Colin Scott, Ali Ghodsi, Teemu Koponen, and Scott Shenker. 2013.
CAP for networks. In HotSDN. ACM, 91–96.

[59] Aurojit Panda, Wenting Zheng, Xiaohe Hu, Arvind Krishnamurthy, and Scott
Shenker. 2017. SCL: SimplifyingDistributed SDNControl Planes. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17). USENIX
Association, Boston, MA, 329–345. https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/panda-aurojit-scl

[60] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans
Fugal. 2014. Fastpass: A Centralized Zero-queue Datacenter Network. In SIG-
COMM.

[61] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang, Aditya
Akella, Sujata Banerjee, Charles Clark, YadiMa, Puneet Sharma, and Ying Zhang.
2015. PGA: Using Graphs to Express and Automatically Reconcile Network Poli-
cies. In SIGCOMM. ACM, 29–42.

[62] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David
Walker. 2012. Abstractions for Network Update. SIGCOMM (2012).

[63] Shambwaditya Saha, Santhosh Prabhu, and P. Madhusudan. 2015. NetGen: Syn-
thesizing Data-plane Configurations for Network Policies. In SOSR.

[64] Liron Schiff, Michael Borokhovich, and Stefan Schmid. 2014. Reclaiming the
Brain: Useful OpenFlow Functions in the Data Plane. In HotNets. ACM, 7:1–7:7.

[65] Colin Scott, Andreas Wundsam, Barath Raghavan, Aurojit Panda, Andrew
Or, Jefferson Lai, Eugene Huang, Zhi Liu, Ahmed El-Hassany, Sam Whitlock,
Hrishikesh B. Acharya, Kyriakos Zarifis, and Scott Shenker. 2014. Troubleshoot-
ing blackbox SDN control software with minimal causal sequences. In SIG-
COMM. ACM, 395–406.

[66] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011. A
comprehensive study of Convergent and Commutative Replicated Data Types. Re-
search Report RR-7506. Inria – Centre Paris-Rocquencourt ; INRIA. 50 pages.
https://hal.inria.fr/inria-00555588

[67] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad
Alizadeh, Hari Balakrishnan, George Varghese, Nick McKeown, and Steve Lick-
ing. 2016. Packet Transactions: High-Level Programming for Line-Rate Switches.
SIGCOMM (2016).

[68] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S. Muthukr-
ishnan, and Jennifer Rexford. 2017. Heavy-Hitter Detection Entirely in the Data

SOSR ’21, September 20–21, 2021, Virtual Event, USA Jedidiah McClurg

Plane. In SOSR. ACM, 164–176.
[69] Steffen Smolka, Spiridon Eliopoulos, Nate Foster, and Arjun Guha. 2015. A Fast

Compiler for NetKAT. ICFP (2015).
[70] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. 2018. Distributed Net-

work Monitoring and Debugging with SwitchPointer. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 18). USENIX As-
sociation, Renton, WA, 453–456. https://www.usenix.org/conference/nsdi18/
presentation/tammana

[71] Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Karagiannis, Antony I. T.
Rowstron, Tom Talpey, Richard Black, and Timothy Zhu. 2013. IOFlow: a
software-defined storage architecture. In SOSP. ACM, 182–196.

[72] Stefano Vissicchio, Olivier Tilmans, Laurent Vanbever, and Jennifer Rexford.
2015. Central Control Over Distributed Routing. In ACM SIGCOMM.

[73] Glynn Winskel. 1987. Event Structures. Springer.
[74] Yang Wu, Ang Chen, Andreas Haeberlen, Wenchao Zhou, and Boon Thau

Loo. 2017. Automated Bug Removal for Software-Defined Networks. In NSDI.

USENIX Association, 719–733.
[75] Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software Defined TrafficMeasure-

ment with OpenSketch. In NSDI. USENIX Association, 29–42.
[76] Yifei Yuan, Rajeev Alur, and Boon Thau Loo. 2014. NetEgg: Programming Net-

work Policies by Examples. HotNets (2014).
[77] Yifei Yuan, Dong Lin, Rajeev Alur, and Boon Thau Loo. 2015. Scenario-based

Programming for SDN Policies. CoNEXT (2015).
[78] Yifei Yuan, Dong Lin, Ankit Mishra, Sajal Marwaha, Rajeev Alur, and BoonThau

Loo. 2017. Quantitative Network Monitoring with NetQRE. In SIGCOMM. ACM,
99–112.

[79] Hong Zhang, Junxue Zhang,Wei Bai, Kai Chen, andMosharaf Chowdhury. 2017.
Resilient Datacenter Load Balancing in the Wild. In SIGCOMM. ACM, 253–266.

[80] Wenxuan Zhou, Dong Jin, Jason Croft, Matthew Caesar, and P. Brighten God-
frey. 2015. Enforcing Generalized Consistency Properties in Software-Defined
Networks. NSDI (2015).

Correct-by-Construction Network Programming
for Stateful Data-Planes SOSR ’21, September 20–21, 2021, Virtual Event, USA

A CONGA–IR CODE
A.1 Network Topology

let topology = [
switch(S3, ingress),
switch(S2, ingress),
switch(S1, ingress),
switch(S6, ingress),
switch(S5, ingress),
switch(S4, ingress),
host(H8, 00:00:00:00:00:08, 10.0.0.8, S6:1),
host(H9, 00:00:00:00:00:09, 10.0.0.9, S6:2),
host(H7, 00:00:00:00:00:07, 10.0.0.7, S6:3),
host(H1, 00:00:00:00:00:01, 10.0.0.1, S4:4),
host(H6, 00:00:00:00:00:06, 10.0.0.6, S5:4),
host(H2, 00:00:00:00:00:02, 10.0.0.2, S4:5),
host(H4, 00:00:00:00:00:04, 10.0.0.4, S5:5),
host(H3, 00:00:00:00:00:03, 10.0.0.3, S4:6),
host(H5, 00:00:00:00:00:05, 10.0.0.5, S5:6),
link(S3:1, S6:4),
link(S2:1, S6:5),
link(S3:2, S5:1),
link(S1:1, S6:6),
link(S2:2, S5:2),
link(S3:3, S4:1),
link(S1:2, S5:3),
link(S2:3, S4:2),
link(S1:3, S4:3)

]

A.2 Switch Initialization
fn init_switch(mut swt:Switch, swt_id:uint(32)) {

for(i in 0 .. 8) {
// init each flowlet to (port=0, valid=false, age=true)
swt.flowlets[i] = (0 uint9, false, true)

};
for(i in 0 .. 8) {

// set each "pointer" to 1
swt.from_table[i].0 = 1 uint9

};
// initialize all allowable shortest-paths to have cost 1

in the to_table (0 represents infinity)
if swt_id == 1 uint32 { // from S1...

// to H1, via port 3
swt.to_table[0][3] = 1 uint32;
// to H2, via port 3
swt.to_table[1][3] = 1 uint32;
// to H3, via port 3
swt.to_table[2][3] = 1 uint32;

// to H4, via port 2
swt.to_table[3][2] = 1 uint32;
// to H5, via port 2
swt.to_table[4][2] = 1 uint32;
// to H6, via port 2
swt.to_table[5][2] = 1 uint32;

// to H8, via port 1
swt.to_table[7][1] = 1 uint32;
// to H9, via port 1
swt.to_table[8][1] = 1 uint32;
// to H7, via port 1
swt.to_table[6][1] = 1 uint32

}
// ...
else {}

}

A.3 Ingress Callback

fn ingress(mut pkt:Packet, mut swt:Switch,
swt_id:uint(32), input_port:uint(9),
clone_id:uint(8), is_edge:bool, queue_time:uint(32)) {

// if this packet has entered the network from a host
if is_edge {

// grab the corresponding row of flowlet table,
to_table, and from_table

let mut temp =
if pkt.ip_dst == 10.0.0.1 uint32 {

(swt.flowlets[0], swt.to_table[0], swt.from_table[0])
} else if pkt.ip_dst == 10.0.0.2 uint32 {

(swt.flowlets[1], swt.to_table[1], swt.from_table[1])
}
// ...
else {

(swt.flowlets[8], swt.to_table[8], swt.from_table[8])
};
let mut flowlet = temp.0;
let mut table = temp.1;
let mut fr_table = temp.2;

let mut port = flowlet.0;
if(flowlet.1) {

// if the flowlet is still active, use the flowlet's
current port

} else {
// if the flowlet has expired, make a load balancing

decision (find the minimum entry in this row of
the to_table)

let mut min = 4294967295 uint32;
for(i in 0 uint9 .. 6 uint9) {

if table[i] > 0 uint32 && table[i] < min {
min = table[i];
port = i

} else {}
};

flowlet.0 = port;
flowlet.1 = true

};
// mark the packet's tag, and assign it to

corresponding port
pkt.lbtag = port;
pkt.ce = 1 uint32;
push_output(pkt, port, 123 uint(8), egress);
// reset the age bit
flowlet.2 = false;
// load a response metric
for(i in 1 uint9 .. 6 uint9) {

if fr_table.0 == i && fr_table.1[i] > 0 uint32 {
pkt.fb_metric = fr_table.1[i];
pkt.fb_lbtag = i

} else {}
};
// make sure we increment the "pointer" so that the

next metric will be considered later
if fr_table.0 == 6 uint9 { fr_table.0 = 1 uint9 }
else { fr_table.0 = fr_table.0 + 1 uint9 };

// save any modifications to flowlet table and
from_table

if pkt.ip_dst == 10.0.0.1 uint32 {
swt.flowlets[0] = flowlet; swt.from_table[0] =

fr_table
} else if pkt.ip_dst == 10.0.0.2 uint32 {

swt.flowlets[1] = flowlet; swt.from_table[1] =
fr_table

}
// ...

SOSR ’21, September 20–21, 2021, Virtual Event, USA Jedidiah McClurg

else {
swt.flowlets[8] = flowlet; swt.from_table[8] =

fr_table
}

} else {
// if the packet has not just entered from a host...
// first, load any incoming fb_lbtag and fb_metric into

to_table
if pkt.fb_lbtag > 0 uint9 {

let mut temp =
if pkt.ip_src == 10.0.0.1 uint32 { swt.to_table[0] }
else if pkt.ip_src == 10.0.0.2 uint32 {

swt.to_table[1] }
// ...
else { swt.to_table[8] };
for(j in 0 uint9 .. 6 uint9) {

if(pkt.fb_lbtag == j) {
temp[j] = pkt.fb_metric

} else {}
};
if pkt.ip_src == 10.0.0.1 uint32 {

swt.to_table[0] = temp
} else if pkt.ip_src == 10.0.0.2 uint32 {

swt.to_table[1] = temp
}
// ...
else {

swt.to_table[8] = temp
}

} else {};

// do basic ECMP forwarding
if swt_id == 1 uint32 && pkt.ip_dst == 10.0.0.4 uint32 {

push_output(pkt, 2 uint(9), 123 uint(8), egress)
} else if swt_id == 1 uint32 && pkt.ip_dst == 10.0.0.7

uint32 {
push_output(pkt, 1 uint(9), 123 uint(8), egress)

}
// ...
else if swt_id == 2 uint32 && pkt.ip_dst == 10.0.0.4

uint32 {
push_output(pkt, 2 uint(9), 123 uint(8), egress)

} else if swt_id == 2 uint32 && pkt.ip_dst == 10.0.0.7
uint32 {

push_output(pkt, 1 uint(9), 123 uint(8), egress)
}
// ...
else if swt_id == 3 uint32 && pkt.ip_dst == 10.0.0.4

uint32 {
push_output(pkt, 2 uint(9), 123 uint(8), egress)

} else if swt_id == 3 uint32 && pkt.ip_dst == 10.0.0.7
uint32 {

push_output(pkt, 1 uint(9), 123 uint(8), egress)
}
// ...
else {}

}
pkt

}

A.4 Egress Callback
fn egress(mut pkt:Packet, mut swt:Switch, swt_id:uint(32),

input_port:uint(9), clone_id:uint(8), is_edge:bool,
queue_time:uint(32)) {

// if the packet has reached its destination host
if is_edge {

// grab the corresponding entry in the from_table
let mut temp =
if pkt.ip_src == 10.0.0.1 uint32 {

swt.from_table[0]
} else if pkt.ip_src == 10.0.0.2 uint32 {

swt.from_table[1]
}
// ...
else {

swt.from_table[8]
};
// save this packet's congestion metrics
for(j in 0 uint9 .. 6 uint9) {

if(pkt.lbtag == j) {
temp.1[j] = pkt.ce;
temp.0 = j

} else {}
};
// save the edited entry to the from_table
if pkt.ip_src == 10.0.0.1 uint32 {

swt.from_table[0] = temp
} else if pkt.ip_src == 10.0.0.2 uint32 {

swt.from_table[1] = temp
}
// ...
else {

swt.from_table[8] = temp
}

} else {
// if the packet hasn't reached its destination, update

packet's congestion metric
pkt.ce = pkt.ce + queue_time

};
pkt

}

	Abstract
	1 Introduction
	2 Motivation: Composing Load Balancer with Stateful Firewall
	3 Callback State Machines
	3.1 TAPIR: Stateful Dataplane Intermediate Representation
	3.2 Callback State Machines

	4 CSM Compiler
	4.1 Compilation: L3 L2.
	4.2 Compilation: L2 L1.
	4.3 Compilation: L1 P4.

	5 Implementation & Evaluation
	6 Discussion and Future Work
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A CONGA–IR Code
	A.1 Network Topology
	A.2 Switch Initialization
	A.3 Ingress Callback
	A.4 Egress Callback

