Towards K-Nearest Neighbor Search in Time-Dependent Spatial Network Databases by U. Demiryurek, F. Banaei-Kashani, and C. Shahabi (Databases in Networked Information Systems, Lecture Notes in Computer Science, 2010)

> presented by Jedidiah R. McClurg

Northwestern University

November 28, 2011

The k-Nearest Neighbor problem plays a very important role in sensor network applications

- The aforementioned paper [\[1\]](#page-21-1) seeks to generalize this problem for networks where distances may change throughout time
- This talk will cover the paper in the following order:
	- Background/Related Work
	- ² Formal Preliminaries
	- ³ Proposed Algorithms
	- **Experimental Results**
	- **Conclusion**

Motivation

- How is k-NN useful?
	- Google Maps, GPS navigation systems
- Why do we need time-dependent k-NN?
	- Travel time ("distance") is not static: (Weekday Travel Time on I-405 in Los Angeles)

We can readily obtain such time-dependent sensor data

Using Time-Dependent k-NN

Here is an example in which we can use TD-kNN:

- Can we simply store one of these snapshots for each t_s ?
	- The data is continuous, so this would require excessive storage
- Given a time t_s , can we just reload the edge weights and use regular k-NN on the resulting graph?
	- This would be very slow if the network is large
- The paper presents two TD-kNN algorithms which attempt to circumvent these limitations

Some Related Work

- Related work regarding KNN queries
	- Various adaptations of Dijkstra's Algorithm, such as Incremental Network Expansion [\[3\]](#page-21-2)
	- All of these rely on static edge weights
- Related work regarding time-dependent shortest path (TDSP)
	- **Problem shown to be NP-Hard in non-FIFO networks**
	- Belman-Ford adapted to TDSP with piecewise-linear functions as edge weights [\[2\]](#page-21-3)
- These results can be used to build TD-kNN algorithms if we adopt the FIFO and piecewise linearity restrictions

Definition (Time-Dependent Graph)

A Time-Dependent Graph is a directed graph $G_T(V, E)$ in which vertices represent the network nodes and edges represent the node connections. For each edge (v_i,v_j) , there is a travel time function $c_{i,j}(t)$ which represents the time to travel from v_i to v_j starting at time t.

Definition (Travel Time)

Let $s \rightarrow d$ denote a path, i.e. a sequence of nodes v_1, v_2, \cdots, v_k such that $s=v_1, d=v_k$ and $(v_i, v_{i+1}) \in E$ for all $1 \leq i < k$. The Travel Time from s to d starting at t_s is then denoted as tt($s \rightsquigarrow d, t_s$).

We can see that the Travel Time can be calculated as follows:

$$
tt(s \sim d, t_s) = \sum_{i=1}^{k-1} c_{i,j}(t_i)
$$

where $t_1 = t_s$ and $t_{i+1} = t_i + c_{i,i}(t_i)$.

Definition (Time-Dependent Shortest Path)

The Shortest Path between nodes s and d starting at time t_s is denoted tdsp(s, d, t_s). Since Travel Time is our distance metric, the Shortest Path is defined as the path with the smallest Travel Time between s and d starting at t_s .

Definition (Time-Dependent k-Nearest Neighbor Query)

A Time-Dependent k-NN Query with respect to a node s at time t is one which finds the set of k closest neighboring nodes. That is, given a node s, the Time-Dependent k-NN Query will return a set P such that

$$
\bullet\ |P|=k
$$

■ tdsp(s, p, t) \leq tdsp(s, q, t) for all $p \in P$, $q \notin P$

TD-KNN with Time-Expanded Networks (Algorithm 1)

- Earlier, we saw that these two naive ideas will not work:
	- Create a copy of the network for each time
	- Recompute the edge weights on demand
- We can attempt to balance runtime and space usage by making these two ideas work together
- Algorithm 1 subdivides the time domain into n equally-spaced instants and constructs the graph of $n + 1$ appropriately connected copies of the nodes of G_T
- This results in a bounded graph that can be searched using k-NN methods such as Incremental Network Expansion

Algorithm 1 (TE) Details

To execute a TD-kNN query with respect to node v_i at time t, we find the closest time instant, and do a k-NN search starting at the copy of v_i in that instant.

- \bullet If the query time t does not coincide exactly with one of the time instants, we will have an error ϵ that will propagate through the search
- This error is especially noticeable in the Results
- The storage requirement will be $O(|G_T| \cdot N)$ where N is the number of time instants
- This approach adapts the Incremental Network Expansion method to handle $TD-kNN$ queries starting at q
- It maintains a set S of explored nodes v_i which have their minimum distance from q (denoted by $t(v_i)$) correct
- After each iteration it picks the v_i adjacent to S with minimal $I(v_i)$ as the new v_i to add to S
- The labels on unexplored nodes $I(v_i)$ are relaxed with $min(I(v_j), f(v_i, v_j))$, where $f(v_i,v_j) = tt(q\rightsquigarrow v_i,t_q)+c_{i,j}(t(v_i))$

Algorithm 2 (TD-NE) Details

The following algorithm gives the specifics of the preceding idea:

$TD-kNN(q, k, t_q)$

1:
$$
NN \leftarrow \emptyset
$$
; $S \leftarrow \{q\}$; $t(q) \leftarrow 0$; $l(v) \leftarrow \infty$ for all $v \notin S$
2: $v_i \leftarrow q$

$$
3:~tt(q\rightsquigarrow v_i,t_q)\leftarrow 0
$$

4: while $|NN| < k$ do

5: for all
$$
v_j \notin S
$$
 do

$$
6: \qquad I(v_j) = min(I(v_j), f(v_i, v_j))
$$

7: end for

8:
$$
v_i \leftarrow v_j \notin S
$$
 such that $I(v_j)$ is minimal

9:
$$
S \leftarrow S \cup \{v_i\}; \quad t(v_i) \leftarrow l(v_i)
$$

$$
10: \quad NN \leftarrow NN \cup \{v_i\}
$$

11:
$$
tt(q \rightsquigarrow v_i, t_q) \leftarrow t(v_i)
$$

12: end while

13: return NN

- Unlike Algorithm 1, this algorithm returns exact rather than approximate results
- The storage requirement is greatly reduced, since the algorithm does not generate multiple copies of the network

Experimental Setup

- Road network topology for Los Angeles County was obtained from the U.S. Census Bureau geography databases
- Traffic sensor data (over the period of 1 year) for these roads was utilized to create edge weight functions
- The resulting model was then loaded into a Java-based simulator running on a desktop workstation
- The simulator has the ability to vary the number of objects, the number of queries, and the k value independently
- Objects are represented as specially-marked nodes in the simulated network

Correctness and Impact of k

- For the correctness experiment, 10K objects and 3K queries were uniformly distributed throughout the network, and a query size of $k = 20$ was used
- For the experiment regarding k , the simulator used the preceding parameters, but varied k between 1 and 50

For the experiment regarding network size, the simulator used the preceding parameters, but varied the network size (50K - 250K segments) by examining subsets of the LA road model

Impact of Object/Query Cardinality

- For the object cardinality experiment, the preceding parameters were used while varying the number of objects between 1K and 20K
- For the query cardinality experiment, the number of queries was varied between 1K and 5K

Conclusion

- Summary of the paper
	- This paper formalizes the notion of TD-kNN queries
	- It presents two algorithms for performing such queries
	- Algorithm 1 (TE) shows significant incorrectness, especially during rush hours
	- Algorithm 2 (TD-NE) shows a performance increase over TE, and demonstrates 100% correctness
	- TD-kNN techniques will help to improve the accuracy of navigation systems
- **•** Future work
	- New data models for representing spatiotemporal networks
	- Preprocessing/indexing to reduce response time in query processing
	- Other spatial queries (ranges, etc.)

Questions/comments?

Bibliography

Ugur Demiryurek, Farnoush Banaei-Kashani, and Cyrus 螶 Shahabi.

Towards k-nearest neighbor search in time-dependent spatial network databases.

In Databases in Networked Information Systems, volume 5999 of Lecture Notes in Computer Science, pages 296–310. Springer, 2010.

鼂 Ariel Orda and Raphael Rom.

> Shortest-path and minimum-delay algorithms in networks with time-dependent edge-length.

J. ACM, 37:607–625, July 1990.

Dimitris Papadias, Jun Zhang, Nikos Mamoulis, and Yufei Tao.

Query processing in spatial network databases. In Proceedings of VLDB - Volume 29, VLDB '2003, pages 802–813. VLDB Endowment, 2003.