
Towards K-Nearest Neighbor Search in
Time-Dependent Spatial Network Databases

by
U. Demiryurek, F. Banaei-Kashani, and C. Shahabi
(Databases in Networked Information Systems,
Lecture Notes in Computer Science, 2010)

presented by
Jedidiah R. McClurg

Northwestern University

November 28, 2011

presented by Jedidiah McClurg Time-Dependent K-NN by Demiryurek et. al.

Introduction

The k-Nearest Neighbor problem plays a very important role
in sensor network applications

−→

The aforementioned paper [1] seeks to generalize this problem
for networks where distances may change throughout time

This talk will cover the paper in the following order:
1 Background/Related Work
2 Formal Preliminaries
3 Proposed Algorithms
4 Experimental Results
5 Conclusion

presented by Jedidiah McClurg Time-Dependent K-NN by Demiryurek et. al.

Motivation

How is k-NN useful?

Google Maps, GPS navigation systems

Why do we need time-dependent k-NN?

Travel time (“distance”) is not static:
(Weekday Travel Time on I-405 in Los Angeles)

We can readily obtain such time-dependent sensor data

presented by Jedidiah McClurg Time-Dependent K-NN by Demiryurek et. al.

Using Time-Dependent k-NN

Here is an example in which we can use TD-kNN:

(b) 1-NN Query at 5 PM(a) 1-NN Query at 2 PM

Can we simply store one of these snapshots for each ts?

The data is continuous, so this would require excessive storage

Given a time ts , can we just reload the edge weights and use
regular k-NN on the resulting graph?

This would be very slow if the network is large

The paper presents two TD-kNN algorithms which attempt to
circumvent these limitations

presented by Jedidiah McClurg Time-Dependent K-NN by Demiryurek et. al.

Some Related Work

Related work regarding KNN queries

Various adaptations of Dijkstra’s Algorithm, such as
Incremental Network Expansion [3]
All of these rely on static edge weights

Related work regarding time-dependent shortest path (TDSP)

Problem shown to be NP-Hard in non-FIFO networks
Belman-Ford adapted to TDSP with piecewise-linear functions
as edge weights [2]

These results can be used to build TD-kNN algorithms if we
adopt the FIFO and piecewise linearity restrictions

presented by Jedidiah McClurg Time-Dependent K-NN by Demiryurek et. al.

Preliminaries - Time-Dependent Graph

Definition (Time-Dependent Graph)

A Time-Dependent Graph is a directed graph GT (V ,E) in which
vertices represent the network nodes and edges represent the node
connections. For each edge (vi , vj), there is a travel time function
ci ,j(t) which represents the time to travel from vi to vj starting at
time t.

(a) Graph GT (b) c1,2(t) (c) c2,3 (t)

(d) c2,4(t) (e) c4,5 (t) (f) c3,5(t) change

presented by Jedidiah McClurg Time-Dependent K-NN by Demiryurek et. al.

Preliminaries - Travel Time

Definition (Travel Time)

Let s ; d denote a path, i.e. a sequence of nodes v1, v2, · · · , vk
such that s = v1, d = vk and (vi , vi+1) ∈ E for all 1 ≤ i < k. The
Travel Time from s to d starting at ts is then denoted as
tt(s ; d , ts).

We can see that the Travel Time can be calculated as follows:

tt(s ; d , ts) =
k−1∑
i=1

ci ,j(ti)

where t1 = ts and ti+1 = ti + ci ,j(ti).

presented by Jedidiah McClurg Time-Dependent K-NN by Demiryurek et. al.

Preliminaries - Time-Dependent Shortest Path

Definition (Time-Dependent Shortest Path)

The Shortest Path between nodes s and d starting at time ts is
denoted tdsp(s, d , ts). Since Travel Time is our distance metric,
the Shortest Path is defined as the path with the smallest Travel
Time between s and d starting at ts .

(a) Graph GT (b) c1,2(t) (c) c2,3 (t)

(d) c2,4(t) (e) c4,5 (t) (f) c3,5(t) change

tdsp(v1,v5,5)

tdsp(v1,v5,10)

presented by Jedidiah McClurg Time-Dependent K-NN by Demiryurek et. al.

Preliminaries - Time-Dependent k-NN Query

Definition (Time-Dependent k-Nearest Neighbor Query)

A Time-Dependent k-NN Query with respect to a node s at time t
is one which finds the set of k closest neighboring nodes. That is,
given a node s, the Time-Dependent k-NN Query will return a set
P such that

1 |P| = k

2 tdsp(s, p, t) ≤ tdsp(s, q, t) for all p ∈ P, q /∈ P

presented by Jedidiah McClurg Time-Dependent K-NN by Demiryurek et. al.

TD-KNN with Time-Expanded Networks (Algorithm 1)

Earlier, we saw that these two naive ideas will not work:

Create a copy of the network for each time
Recompute the edge weights on demand

We can attempt to balance runtime and space usage by
making these two ideas work together

Algorithm 1 subdivides the time domain into n equally-spaced
instants and constructs the graph of n + 1 appropriately
connected copies of the nodes of GT

This results in a bounded graph that can be searched using
k-NN methods such as Incremental Network Expansion

presented by Jedidiah McClurg Time-Dependent K-NN by Demiryurek et. al.

Algorithm 1 (TE) Details

This diagram shows the time-expanded graph generated for n = 6:

(a) t0=0 (b) t1=10 (c) t2=20

(d) t3=30 (e) Time-expandedmodel

To execute a TD-kNN query with respect to node vi at time t, we
find the closest time instant, and do a k-NN search starting at the
copy of vi in that instant.

presented by Jedidiah McClurg Time-Dependent K-NN by Demiryurek et. al.

Analysis of Algorithm 1 (TE)

If the query time t does not coincide exactly with one of the
time instants, we will have an error ε that will propagate
through the search

This error is especially noticeable in the Results

The storage requirement will be O(|GT | · N) where N is the
number of time instants

presented by Jedidiah McClurg Time-Dependent K-NN by Demiryurek et. al.

TD-KNN with Network Expansion (Algorithm 2)

This approach adapts the Incremental Network Expansion
method to handle TD-kNN queries starting at q

It maintains a set S of explored nodes vj which have their
minimum distance from q (denoted by t(vj)) correct

After each iteration it picks the vj adjacent to S with minimal
l(vj) as the new vi to add to S

The labels on unexplored nodes l(vj) are relaxed with
min(l(vj), f (vi , vj)), where
f (vi , vj) = tt(q ; vi , tq) + ci ,j(t(vi))

presented by Jedidiah McClurg Time-Dependent K-NN by Demiryurek et. al.

Algorithm 2 (TD-NE) Details

The following algorithm gives the specifics of the preceding idea:

TD-kNN(q, k , tq)

1: NN ← ∅; S ← {q}; t(q)← 0; l(v)←∞ for all v /∈ S
2: vi ← q
3: tt(q ; vi , tq)← 0
4: while |NN| < k do
5: for all vj /∈ S do
6: l(vj) = min(l(vj), f (vi , vj))
7: end for
8: vi ← vj /∈ S such that l(vj) is minimal
9: S ← S ∪ {vi}; t(vi)← l(vi)

10: NN ← NN ∪ {vi}
11: tt(q ; vi , tq)← t(vi)
12: end while
13: return NN

presented by Jedidiah McClurg Time-Dependent K-NN by Demiryurek et. al.

Analysis of Algorithm 2 (TD-NE)

Unlike Algorithm 1, this algorithm returns exact rather than
approximate results

The storage requirement is greatly reduced, since the
algorithm does not generate multiple copies of the network

presented by Jedidiah McClurg Time-Dependent K-NN by Demiryurek et. al.

Experimental Setup

Road network topology for Los Angeles County was obtained
from the U.S. Census Bureau geography databases

Traffic sensor data (over the period of 1 year) for these roads
was utilized to create edge weight functions

The resulting model was then loaded into a Java-based
simulator running on a desktop workstation

The simulator has the ability to vary the number of objects,
the number of queries, and the k value independently

Objects are represented as specially-marked nodes in the
simulated network

presented by Jedidiah McClurg Time-Dependent K-NN by Demiryurek et. al.

Correctness and Impact of k

For the correctness experiment, 10K objects and 3K queries
were uniformly distributed throughout the network, and a
query size of k = 20 was used

For the experiment regarding k, the simulator used the
preceding parameters, but varied k between 1 and 50

(a) Correctness versus time (b) Impact of k on response time

presented by Jedidiah McClurg Time-Dependent K-NN by Demiryurek et. al.

Impact of Network Size

For the experiment regarding network size, the simulator used the
preceding parameters, but varied the network size (50K - 250K
segments) by examining subsets of the LA road model

(b) Impact of network size

presented by Jedidiah McClurg Time-Dependent K-NN by Demiryurek et. al.

Impact of Object/Query Cardinality

For the object cardinality experiment, the preceding
parameters were used while varying the number of objects
between 1K and 20K

For the query cardinality experiment, the number of queries
was varied between 1K and 5K

(a) Impact of object cardinality (b) Impact of query cardinality

presented by Jedidiah McClurg Time-Dependent K-NN by Demiryurek et. al.

Conclusion

Summary of the paper

This paper formalizes the notion of TD-kNN queries
It presents two algorithms for performing such queries
Algorithm 1 (TE) shows significant incorrectness, especially
during rush hours
Algorithm 2 (TD-NE) shows a performance increase over TE,
and demonstrates 100% correctness
TD-kNN techniques will help to improve the accuracy of
navigation systems

Future work

New data models for representing spatiotemporal networks
Preprocessing/indexing to reduce response time in query
processing
Other spatial queries (ranges, etc.)

presented by Jedidiah McClurg Time-Dependent K-NN by Demiryurek et. al.

Thanks!

Questions/comments?

presented by Jedidiah McClurg Time-Dependent K-NN by Demiryurek et. al.

Bibliography

Ugur Demiryurek, Farnoush Banaei-Kashani, and Cyrus
Shahabi.
Towards k-nearest neighbor search in time-dependent spatial
network databases.
In Databases in Networked Information Systems, volume 5999
of Lecture Notes in Computer Science, pages 296–310.
Springer, 2010.

Ariel Orda and Raphael Rom.
Shortest-path and minimum-delay algorithms in networks with
time-dependent edge-length.
J. ACM, 37:607–625, July 1990.

Dimitris Papadias, Jun Zhang, Nikos Mamoulis, and Yufei
Tao.
Query processing in spatial network databases.
In Proceedings of VLDB - Volume 29, VLDB ’2003, pages
802–813. VLDB Endowment, 2003.

presented by Jedidiah McClurg Time-Dependent K-NN by Demiryurek et. al.

