Towards K-Nearest Neighbor Search in Time-Dependent Spatial Network Databases by U. Demiryurek, F. Banaei-Kashani, and C. Shahabi (*Databases in Networked Information Systems*, Lecture Notes in Computer Science, 2010)

> presented by Jedidiah R. McClurg

Northwestern University

November 28, 2011

• The k-Nearest Neighbor problem plays a very important role in sensor network applications

- The aforementioned paper [1] seeks to generalize this problem for networks where distances may change throughout time
- This talk will cover the paper in the following order:
 - Background/Related Work
 - Pormal Preliminaries
 - Proposed Algorithms
 - Experimental Results
 - Conclusion

Motivation

- How is k-NN useful?
 - Google Maps, GPS navigation systems
- Why do we need time-dependent k-NN?
 - Travel time ("distance") is not static: (Weekday Travel Time on I-405 in Los Angeles)

• We can readily obtain such time-dependent sensor data

Using Time-Dependent k-NN

• Here is an example in which we can use TD-kNN:

- Can we simply store one of these snapshots for each t_s?
 - The data is continuous, so this would require excessive storage
- Given a time *t_s*, can we just reload the edge weights and use regular k-NN on the resulting graph?
 - This would be very slow if the network is large
- The paper presents two TD-kNN algorithms which attempt to circumvent these limitations

Some Related Work

- Related work regarding KNN queries
 - Various adaptations of Dijkstra's Algorithm, such as Incremental Network Expansion [3]
 - All of these rely on static edge weights
- Related work regarding time-dependent shortest path (TDSP)
 - Problem shown to be NP-Hard in non-FIFO networks
 - Belman-Ford adapted to TDSP with piecewise-linear functions as edge weights [2]
- These results can be used to build TD-kNN algorithms if we adopt the FIFO and piecewise linearity restrictions

Definition (Time-Dependent Graph)

A Time-Dependent Graph is a directed graph $G_T(V, E)$ in which vertices represent the network nodes and edges represent the node connections. For each edge (v_i, v_j) , there is a travel time function $c_{i,j}(t)$ which represents the time to travel from v_i to v_j starting at time t.

Definition (Travel Time)

Let $s \rightsquigarrow d$ denote a path, i.e. a sequence of nodes v_1, v_2, \cdots, v_k such that $s = v_1, d = v_k$ and $(v_i, v_{i+1}) \in E$ for all $1 \le i < k$. The Travel Time from s to d starting at t_s is then denoted as $tt(s \rightsquigarrow d, t_s)$.

We can see that the Travel Time can be calculated as follows:

$$tt(s \rightsquigarrow d, t_s) = \sum_{i=1}^{k-1} c_{i,j}(t_i)$$

where $t_1 = t_s$ and $t_{i+1} = t_i + c_{i,j}(t_i)$.

Definition (Time-Dependent Shortest Path)

The Shortest Path between nodes s and d starting at time t_s is denoted $tdsp(s, d, t_s)$. Since Travel Time is our distance metric, the Shortest Path is defined as the path with the smallest Travel Time between s and d starting at t_s .

Definition (Time-Dependent k-Nearest Neighbor Query)

A Time-Dependent k-NN Query with respect to a node s at time t is one which finds the set of k closest neighboring nodes. That is, given a node s, the Time-Dependent k-NN Query will return a set P such that

$$\bigcirc |P| = k$$

2 $tdsp(s, p, t) \leq tdsp(s, q, t)$ for all $p \in P, q \notin P$

TD-KNN with Time-Expanded Networks (Algorithm 1)

- Earlier, we saw that these two naive ideas will not work:
 - Create a copy of the network for each time
 - Recompute the edge weights on demand
- We can attempt to balance runtime and space usage by making these two ideas work together
- Algorithm 1 subdivides the time domain into n equally-spaced instants and constructs the graph of n + 1 appropriately connected copies of the nodes of G_T
- This results in a bounded graph that can be searched using k-NN methods such as Incremental Network Expansion

Algorithm 1 (TE) Details

This diagram shows the time-expanded graph generated for n = 6: 20 10 10 (v.) (a) $t_0 = 0$ (b) t₁=10 (c) t₂=20 10 t=0 (d) t₃=30 (e) Time-expanded model

To execute a TD-kNN query with respect to node v_i at time t, we find the closest time instant, and do a k-NN search starting at the copy of v_i in that instant.

- If the query time t does not coincide exactly with one of the time instants, we will have an error ϵ that will propagate through the search
- This error is especially noticeable in the Results
- The storage requirement will be $O(|G_T| \cdot N)$ where N is the number of time instants

TD-KNN with Network Expansion (Algorithm 2)

- This approach adapts the Incremental Network Expansion method to handle TD-kNN queries starting at *q*
- It maintains a set S of explored nodes v_j which have their minimum distance from q (denoted by t(v_j)) correct
- After each iteration it picks the v_j adjacent to S with minimal $l(v_i)$ as the new v_i to add to S
- The labels on unexplored nodes $l(v_j)$ are relaxed with $min(l(v_j), f(v_i, v_j))$, where $f(v_i, v_j) = tt(q \rightsquigarrow v_i, t_q) + c_{i,j}(t(v_i))$

Algorithm 2 (TD-NE) Details

The following algorithm gives the specifics of the preceding idea:

$\mathsf{TD-kNN}(q, k, t_q)$

1:
$$NN \leftarrow \emptyset$$
; $S \leftarrow \{q\}$; $t(q) \leftarrow 0$; $l(v) \leftarrow \infty$ for all $v \notin S$
2: $v_i \leftarrow q$
3: $tt(q \rightsquigarrow v_i, t_q) \leftarrow 0$
4: while $|NN| < k$ do
5: for all $v_j \notin S$ do
6: $l(v_j) = min(l(v_j), f(v_i, v_j))$
7: end for
8: $v_i \leftarrow v_j \notin S$ such that $l(v_j)$ is minimal
9: $S \leftarrow S \cup \{v_i\}$; $t(v_i) \leftarrow l(v_i)$
10: $NN \leftarrow NN \cup \{v_i\}$
11: $tt(q \rightsquigarrow v_i, t_q) \leftarrow t(v_i)$
12: end while
13: return NN

- Unlike Algorithm 1, this algorithm returns exact rather than approximate results
- The storage requirement is greatly reduced, since the algorithm does not generate multiple copies of the network

Experimental Setup

- Road network topology for Los Angeles County was obtained from the U.S. Census Bureau geography databases
- Traffic sensor data (over the period of 1 year) for these roads was utilized to create edge weight functions
- The resulting model was then loaded into a Java-based simulator running on a desktop workstation
- The simulator has the ability to vary the number of objects, the number of queries, and the *k* value independently
- Objects are represented as specially-marked nodes in the simulated network

Correctness and Impact of k

- For the correctness experiment, 10K objects and 3K queries were uniformly distributed throughout the network, and a query size of k = 20 was used
- For the experiment regarding k, the simulator used the preceding parameters, but varied k between 1 and 50

For the experiment regarding network size, the simulator used the preceding parameters, but varied the network size (50K - 250K segments) by examining subsets of the LA road model

Impact of Object/Query Cardinality

- For the object cardinality experiment, the preceding parameters were used while varying the number of objects between 1K and 20K
- For the query cardinality experiment, the number of queries was varied between 1K and 5K

Conclusion

- Summary of the paper
 - This paper formalizes the notion of TD-kNN queries
 - It presents two algorithms for performing such queries
 - Algorithm 1 (TE) shows significant incorrectness, especially during rush hours
 - Algorithm 2 (TD-NE) shows a performance increase over TE, and demonstrates 100% correctness
 - TD-kNN techniques will help to improve the accuracy of navigation systems
- Future work
 - New data models for representing spatiotemporal networks
 - Preprocessing/indexing to reduce response time in query processing
 - Other spatial queries (ranges, etc.)

Questions/comments?

Bibliography

Ugur Demiryurek, Farnoush Banaei-Kashani, and Cyrus Shahabi.

Towards k-nearest neighbor search in time-dependent spatial network databases.

In *Databases in Networked Information Systems*, volume 5999 of *Lecture Notes in Computer Science*, pages 296–310. Springer, 2010.

Ariel Orda and Raphael Rom.

Shortest-path and minimum-delay algorithms in networks with time-dependent edge-length.

J. ACM, 37:607-625, July 1990.

Dimitris Papadias, Jun Zhang, Nikos Mamoulis, and Yufei Tao.

Query processing in spatial network databases. In *Proceedings of VLDB - Volume 29*, VLDB '2003, pages 802–813. VLDB Endowment, 2003.